A. | B. | C. | D. |
分析 正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.
解答 解:A、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满;
B、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;
C、正八边形的内角为135°,菱形的内角度数不确定,所以不一定能构成360°的周角,故不能铺满;
D、正六边形和正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;
故选B.
点评 本题考查平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 众数 | B. | 平均数 | C. | 中位数 | D. | 加权平均数 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 甲、乙射中的总环数相同 | B. | 甲、乙的众数相同 | ||
C. | 乙的成绩波动较大 | D. | 甲的成绩稳定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com