精英家教网 > 初中数学 > 题目详情
在正方形ABCD中,E、F分别是CB、CD延长线上的点,若EF=BE+DF,求证:∠EAF=135°.
证明:如图,延长DC到G点,使DG=BE,连接AG,GE,
在△AEB和△AGD中,
BE=DG
∠ABE=∠ADG=90°
AB=AD

∴△AEB≌△AGD,
∴AE=AG,
∠EAG=∠EAB+∠GAB=∠GAD+∠GAB=90°,
又∵EF=BE+DF=DG+DF=GF,AF=AF,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF=
1
2
(360°-∠EAG)=135°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点E、F在正方形ABCD的边AB、BC上,BE=CF,若CE=10cm,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形OABC的边长为1,点P在AB上,∠AOP=30°,OP的延长线交CB的延长线于点Q,求PA和BQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知∠EOF,点B、C在射线OF上,四边形ABCD是平行四边形,AC、BD相交于点M,连接OM.
(1)当OM⊥AC时,求证:OA=OC.
(2)如图2,当∠EOF=45°时,且四边形ABCD是边长为a的正方形时,求OM的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF
(1)求证:△BCE≌△DCF;
(2)若∠FDC=30°,求∠BEF的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)在(1)(2)条件下,若AB=BC=12,BE=4,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=
2
,求EB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知正方形ABCD,将一个45度角∝的顶点放在D点并绕D点旋转,角的两边分别交AB边和BC边于点E和F,连接EF.求证:EF=AE+CF
(1)小明是这样思考的:延长BC到G,使得CG=AE,连接DG,先证△DAE≌△DCG,再证△DEF≌△DGF,请你借助图2,按照小明的思路,写出完整的证明思路.
(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF的面积都等于6,求EF的长②将角∝绕D点继续旋转,使得角∝的两边分别和AB边延长线、BC边的延长线交于E和F,如图3所示,猜想EF、AE、CF三线段之间的数量关系并给予证明.请你帮忙解决.

查看答案和解析>>

同步练习册答案