精英家教网 > 初中数学 > 题目详情
2.若x-2y-4=0,则5-2x+4y=-3.

分析 原式后两项提取-2变形后,将已知等式变形后代入计算即可求出值.

解答 解:∵x-2y-4=0,即x-2y=4,
∴原式=5-2(x-2y)=5-8=-3,
故答案为:-3.

点评 此题考查了代数式求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.材料:分母中含有未知数的不等式叫分式不等式,如:$\frac{2x}{x+1}$>0;$\frac{x+3}{x-1}$<0等.那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:
(1)若a>0,b>0,则$\frac{a}{b}$>0;若a<0,b<0,则$\frac{a}{b}$>0;
(2)若a>0,b<0,则$\frac{a}{b}$<0;若a<0,b>0,则$\frac{a}{b}$<0.
反之:(1)若$\frac{a}{b}$>0,则$\left\{\begin{array}{l}{a>0}\\{b>0}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{b<0}\end{array}\right.$
(2)若$\frac{a}{b}$<0,则$\left\{\begin{array}{l}{a>0}\\{b<0}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{b>0}\end{array}\right.$.
根据上述规律,求不等式$\frac{x+1}{x-3}$>0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,⊙A与x轴相交于C(-2,0),D(-8,0)两点,与y轴相切于点B(0,4).
(1)求经过B、C、D三点的抛物线的解析式;
(2)设抛物线的顶点为E,求证:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大?若存在,请求出点F坐标和面积最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在平面直角坐标系中,点A,B的坐标分别为(0,1)和$(\sqrt{3},0)$,若在第四象限存在点C,使△OBC和△OAB相似,则点C的坐标是($\sqrt{3}$,-1),或($\sqrt{3}$,3)或($\frac{\sqrt{3}}{4}$,-$\frac{3}{4}$)或($\frac{3\sqrt{3}}{4}$,-$\frac{3}{4}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在正比例函数y=kx的图象l上,则点B2014的坐标是(1007,1007$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下列等式:①$\frac{1}{1×2×3}$=$\frac{2}{3}$-$\frac{1}{2}$;②$\frac{1}{2×3×4}$=$\frac{3}{8}$-$\frac{1}{3}$;③$\frac{1}{3×4×5}$=$\frac{4}{15}$-$\frac{1}{4}$,…按照此规律,解决下列问题:
(1)完成第④个等式;
(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:$\sqrt{12}$+(-$\frac{1}{2}$)-2-($\sqrt{3}$-1)0-2sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.关于x的方程x2-4x+3-m=0有两个相等的实数根,则m=-1.

查看答案和解析>>

同步练习册答案