【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c=0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大,其中结论正确的是_____(只需填序号)
【答案】①②③⑤
【解析】
利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=-2a,然后根据x=-1时函数值为0可得到3a+c=0,则可对③进行判断;根据二次函数的性质对④进行判断.
①∵抛物线与x轴有两个交点,
∴△=b2﹣4ac>0,
∴4ac<b2,结论①正确;
②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),
∴抛物线与x轴的另一交点坐标为(3,0),
∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,结论②正确;
③∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,
∴﹣=1,
∴b=﹣2a.
∵当x=﹣1时,y=0,
∴a﹣b+c=0,即3a+c=0,结论③正确;
④∵抛物线与x轴的交点坐标为(﹣1,0)、(3,0),
∴当y>0时,x的取值范围是﹣1<x<3,结论④错误;
⑤∵抛物线开口向下,对称轴为直线x=1,
∴当x<0时,y随x增大而增大,结论⑤正确.
综上所述:正确的结论有①②③⑤.
故答案为:①②③⑤.
科目:初中数学 来源: 题型:
【题目】探究与发现:在△ABC中,∠B=∠C,点D在BC边上(点B、C除外),点E在AC边上,且∠ADE=∠AED,连接DE.
(1)如图①,若∠B=∠C=45,
①当∠BAD=60时,求∠CDE的度数;
②试猜想∠BAD与∠CDE的数量关系,并说明理由.
(2)深入探究:如图②,若∠B=∠C,但∠C≠45,其他条件不变,试探究∠BAD与∠CDE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形 ABCD 中,AB=2,∠DAB=60°,点 E 是 AD 边的中点,点 M 是 AB 边上的一个动点(不与点 A 重合), 延长 ME 交 CD 的延长线于点 N,连接MD,AN.
(1)求证:四边形 AMDN 是平行四边形.
(2)当 AM 的值为何值时,四边形 AMDN 是矩形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为
A. B. C. 4 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD.
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,五边形ABCDE中,∠A=140°,∠B=120°,∠E=90°,CP和DP分别是∠BCD、∠EDC的外角平分线,且相交于点P,则∠CPD=__________°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com