精英家教网 > 初中数学 > 题目详情
(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.
分析:(1)连接OD,BD,利用切线的性质得出∠ABC=∠2+∠4=90°,进而得出∠ODE=∠1+∠3=90°,即可得出答案;
(2)根据相似三角形的判定与性质得出△ABC∽△ADB,以及AC的长,进而得出答案.
解答:(1)证明:如图1所示,连接OD,BD
∵AB是⊙O的直径,∴∠ADB=∠BDC=90°.
在Rt△BDC中
∵E是BC的中点,∴DE=
1
2
BC;
∴DE=BE;∴∠1=∠2.
∵OD=OB,∴∠3=∠4;
∵∠ABC=∠2+∠4=90°
∴∠ODE=∠1+∠3=90°,
即OD⊥DE,
∴DE是⊙O的切线;
            
(2)解:∵E是BC的中点,O是AB中点,
∴OE∥AC,
∴∠BAD=∠BOE,
∴cos∠BAD=∠BOE=
3
5

∵BE=
14
3

∴OE=
35
6
点评:此题主要考查了切线的判定与性质以及相似三角形的判定与性质和三角形中位线定理等知识,根据已知得出△ABC∽△ADB是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•丰台区一模)如图,四边形ABCD中,AB=AD,∠BAD=90°,∠CBD=30°,∠BCD=45°,若AB=2
2
.求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)某电器商场从生产厂家购进彩电、洗衣机、冰箱共480台,各种电器的进货比例如图1所示,商场经理安排6人销售彩电,2人销售洗衣机,4人销售洗冰箱.前5天这三种电器的销售情况如图与表格所示.

电器 彩电 洗衣机 冰箱
前5天的销售总量(台) 150 30
请你根据统计图表提供的信息,解答以下问题:
(1)该电器商场购进彩电多少台?
(2)把图2补充完整;
(3)把表格补充完整;
(4)若销售人员与销售速度不变,请通过计算说明哪种电器最先售完?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4).
(1)求二次函数的解析式;
(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)在△ABC中,∠ACB=90°,AC>BC,D是AC边上的动点,E是BC边上的动点,AD=BC,CD=BE.

(1)如图1,若点E与点C重合,连结BD,请写出∠BDE的度数;
(2)若点E与点B、C不重合,连结AE、BD交于点F,请在图2中补全图形,并求出∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)如图,在平面直角坐标系xOy中,⊙C的圆心坐标为(-2,-2),半径为
2
.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为直线AB上一动点.
(1)若△POA是等腰三角形,且点P不与点A、B重合,直接写出点P的坐标;
(2)当直线PO与⊙C相切时,求∠POA的度数;
(3)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系式,并写出t的取值范围.

查看答案和解析>>

同步练习册答案