精英家教网 > 初中数学 > 题目详情
如图,已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD的夹角是多少度?
分析:由D、E分别是等边△ABC中AB、AC上的点,且AE=BD,易证得△ABE≌△BCD(SAS),则可得∠ABE=∠BCD,继而可求得∠BFD=∠CBE+∠BCD=∠CBE+∠ABE=∠ABC=60°.
解答:解:∵△ABC是等边三角形,
∴AB=BC,∠A=∠CBD=60°,
在△ABE和△BCD中,
AB=BC
∠A=∠CBD
AE=BD

∴△ABE≌△BCD(SAS),
∴∠ABE=∠BCD,
∴∠BFD=∠CBE+∠BCD=∠CBE+∠ABE=∠ABC=60°,
即BE与CD的夹角是60°.
点评:此题考查了等边三角形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,已知E,F分别为平行四边形ABCD边AD,AB上的两点,则图形中与△BEC的面积相等的三角形有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图:已知边长分别为a、b的正方形纸片和边长为a、b的长方形纸片若干块.
(1)利用这些纸片(必须每种纸片都要用到)拼成一个长方形(要求:用有刻度的三角板画图,所用的图片与题目中提供的相应图片全等,拼得的长方形的长和宽不相等);
(2)根据你所拼的图形,写出一个与之对应的多项式因式分解的式子.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知C、D分别在OA、OB上,并且OA=OB,OC=OD,AD和BC相交于E,则图中全等三角形的对数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M、N分别为线段AC、BC的中点,且C是线段MB的中点,线段MN=6cm,则线段AM=
4
4
cm,BN=
2
2
cm.

查看答案和解析>>

同步练习册答案