精英家教网 > 初中数学 > 题目详情
已知△ABC内接于⊙O,OD⊥AC于D,如果∠COD=32°,那么∠B的度数为( )
A.16°
B.32°
C.16°或164°
D.32°或148°
【答案】分析:等腰△AOC中,由于OD⊥AC,根据等腰三角形三线合一的特性可得OD平分顶角∠AOC.由此可求出∠AOC的度数.然后分两种情况讨论:
①∠B是锐角,此时∠B和圆心角∠AOC所对的弧相同,根据圆周角定理可求出∠B的度数;
②∠B是钝角,根据圆内接四边形的对角互补,可求出此时∠B的度数.
解答:解:如图;
∵△OAC是等腰三角形,OD⊥AC,
∴OD是∠ADC的平分线,(等腰三角形三线合一)
∴∠AOC=2∠COD=64°;
①当点B在优弧AC上时,由圆周角定理知,∠B=∠AOC=32°;
②当点B在如图点E的位置时,由圆内接四边形的对角互补知,∠E=180°-∠B=148°;
故选D.
点评:本题考查垂弦定理、圆内接四边形的性质、圆心角、圆周角的应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,D是⊙O上一点,连接BD、CD、AC、BD交于点E.
(1)请找出图中的相似三角形,并加以证明;
(2)若∠D=45°,BC=2,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AB=BC=4cm,AO⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向精英家教网终点C运动,速度为1cm/s;点Q沿CA向终点A运动,速度为2cm/s,设它们运动的时间为x(s).
(1)求证:△ABC为等边三角形;
(2)当x为何值时,PQ⊥AC;
(3)当PQ经过圆心O时,求△PQD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、已知△ABC内接于⊙O,AD,BD为⊙O的切线,作DE∥BC,交AC于E,连EO并延长交BC于F,求证:BF=FC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•樊城区模拟)如图,已知△ABC内接于⊙O,弦AD交BC于E,过点D的切线MN交直线AB于M,交直线AC于N.
(1)求证:AE•DE=BE•CE;
(2)连接DB,CD,若MN∥BC,试探究BD与CD的数量关系;
(3)在(2)的条件下,已知AB=6,AN=15,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永州)如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=
60
60
度.

查看答案和解析>>

同步练习册答案