精英家教网 > 初中数学 > 题目详情
如图,已知点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D、E,求证:OB=OC.
分析:根据角平分线性质得出OE=OD,根据ASA证△BEO≌△CDO,根据全等三角形的性质推出即可.
解答:证明:∵点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,
∴OE=OD,∠BEO=∠CDO=90°,
在△BEO和△CDO中
∠BEO=∠CDO
OE=OD
∠EOB=∠DOC

∴△BEO≌△CDO(ASA),
∴OB=OC.
点评:本题考查了全等三角形的性质和判定,注意:①全等三角形的对应角相等,对应边相等,②全等三角形的判定定理有SAS,ASA,AAS,SSS.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、附加题:如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D,∠B=30°.求证:
(1)AD平分∠BAC;
(2)若BD=3
3
,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A,过点C作CE⊥AB于E,CE=8,cosD=
4
5
,则AC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知点C在线段AB的中点,点D、E在线段AB的同侧,AD∥CE,AD=CE.
求证:DC∥EB.

查看答案和解析>>

同步练习册答案