如图,若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形。
科目:初中数学 来源: 题型:解答题
如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图1,在Rt△ABC中,∠C=90°,tanA= ,求证:△ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,网格图的每个小正方形边长均为1.△OAB的顶点均在格点上.已知△与△OAB是以O为位似中心的位似图形,且位似比为1︰3.
(1)请在第一象限内画出△;
(2)试求出△的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
提出问题:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,
因为△EGH与△EBH高相等,底的比是1:2,
所以S△EGH=S△EBH
因为△EFH与△DEH高相等,底的比是1:2,
所以S△EFH=S△DEH
所以S△EGH+S△EFH=S△EBH +S△DEH
即S四边形EFHG=S四边形EBHD
连接BD,
因为△DBE与△ABD高相等,底的比是2:3,
所以S△DBE=S△ABD
因为△BDH与△BCD高相等,底的比是2:3,
所以S△BDH=S△BCD
所以S△DBE +S△BDH=S△ABD+S△BCD =(S△ABD+S△BCD)
=S四边形ABCD
即S四边形EBHD=S四边形ABCD
所以S四边形EFHG=S四边形EBHD=×S四边形ABCD=S四边形ABCD
(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢
验证你的猜想:
(2)问题解决:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)
那么S四边形EFHG与S四边形ABCD之间的关系为: (不必写出求解过程)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在一个边长为a(单位:cm)的正方形ABCD中.
(1)如图1,如果N是AD中点,F为AB中点,连接DF,CN.
①求证:DF=CN;
②连接AC.求DH:HE: EF的值;
(2)如图2,如果点E、M分别是线段AC、CD上的动点,假设点E从点A出发,以cm/s速度沿AC向点C运动,同时点M从点C出发,以1cm/s的速度沿CD向点D运动,运动时间为t(t>0),连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由. (4分)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com