精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知BC是⊙O的直径,P是⊙O上一点,A是
BP
的中点,AD⊥BC于点D,BP与AD相交于点E,若∠ACB=36°,BC=10.
(1)求
AB
的长;
(2)求证:AE=BE.
分析:(1)要求
AB
的长,就要连接OA,求出圆心角,利用弧长公式计算;
(2)连接AB,点A是
BP
的中点,所以
BA
=
AP
,则利用等弧所对的圆周角相等可得∠C=∠ABP.在Rt△ABD和Rt△ADC中,利用同一角的余角相等可得∠BAD=∠C,则∠ABP=∠BAD,所以AE=BE.
解答:精英家教网(1)解:连接OA,∵∠ACB=36°,∴∠AOB=72°.
又∵OB=
1
2
BC=5,
AB
的长为:l=
nπR
180
=
72×π×5
180
=2π


(2)证明:连接AB,
∵点A是
BP
的中点,
BA
=
AP

∴∠C=∠ABP.
∵BC为⊙O的直径,
∴∠BAC=90°,即∠BAD+∠CAD=90°,
又∵AD⊥BC,
∴∠C+∠CAD=90°,
∴∠BAD=∠C,
∴∠ABP=∠BAD,
∴AE=BE.
点评:本题主要考查了弧长公式和等弧所对的圆周角相等的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,已知BC是⊙O的直径,AD切⊙O于A,若∠C=40°,则∠DAC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为
BF
的中点,BF交AD于点E,且BE•EF=32,AD=6.
(1)求证:AE=BE;
(2)求DE的长;
(3)求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知BC是⊙O的直径,P是⊙O上一点,A是
BP
的中点,AD⊥BC于点D,BP与AD相交于点E.
(1)当BC=6且∠ABC=60°时,求
AB
的长;
(2)求证:AE=BE.
(3)过A点作AM∥BP,求证:AM是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,已知BC是⊙O的直径,AB是⊙O的切线,AO交⊙O于点D,∠A=28°,则∠C=
31°
31°

查看答案和解析>>

同步练习册答案