【题目】如图①,中,,点为边上一点,于点,点为中点,点为中点,的延长线交于点,≌.
(1)求证:;
(2)求的大小;
(3)如图②,过点作交的延长线于点,求证:四边形为矩形.
【答案】(1)证明见解析;(2)∠MEF=30°;(3)证明见解析.
【解析】
(1)利用直角三角形斜边中线的性质定理可得CM=DB,EM=DB,问题得证;
(2)利用全等三角形的性质,证明△DEM是等边三角形,即可解决问题;
(3)设FM=a,则AE=CM=EM=a,EF=2a,推出,,得到AN∥PM,易证四边形ANMP是平行四边形,结合∠P=90°即可解决问题.
解:(1)证明:如图①中,
∵DE⊥AB,
∴∠DEB=∠DCB=90°,
∵DM=MB,
∴CM=DB,EM=DB,
∴CM=EM;
(2)解:∵△DAE≌△CEM,CM=EM,
∴AE=ED=EM=CM=DM,∠AED=∠CME=90°
∴△ADE是等腰直角三角形,△DEM是等边三角形,
∵∠AED=∠DEF=90°,∠DEM=60°,
∴∠MEF=30°;
(3)证明:如图②中,设FM=a.
由(2)可知△ADE是等腰直角三角形,△DEM是等边三角形,∠MEF=30°,
∴AE=CM=EM=a,EF=2a,
∵CN=NM,
∴MN=a,
∴,,
∴EM∥AN,
∵AP⊥PM,MN⊥PM,
∴AP∥MN,
∴四边形ANMP是平行四边形,
∵∠P=90°,
∴四边形ANMP是矩形.
科目:初中数学 来源: 题型:
【题目】如图,已知各顶点的坐标分别为,,.
(1)画出以点B为旋转中心,按顺时针方向旋转后得到的;
(2)将先向右平移5个单位长度,再向上平移3个单位长度,得到.
①在图中画出,并写出点A的对应点的坐标;
②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第8周学规得分(规定:加分为“+”,扣分为“﹣”).
(1)第8周小李学规得分总计是多少?
(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第7周末学规累加分数为98分,若他在第9周末学规累加分数达到105分,则他第9周的学规得分总计是多少分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,),射线,分别交直线于点,.
(1)如图1,当与重合时,求的度数;
(2)如图2,设与的交点为,当为的中点时,求线段的长;
(3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD,点P是对角线AC上一点,连结BP,过P作PQ⊥BP,PQ交CD于Q,若AP=,CQ=3,则四边形PBCQ的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,.在下列解答中,填空(理由或数学式):
解:∵(已知),
∴(______),
∵(已知),
∴∠______=∠______(等量代换),
∴______(______),
∴(______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,线段AB、CD相交于点O,连结AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;
(2)仔细观察,在图2中“8字形”有多少个;
(3)图2中,当∠D=50°,∠B=40°时,求∠P的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:如图,射线在上方,射线在下方,,(,),与分别是和 的平分线.
操作发现:(1)当,时,求的度数;
(2)继续探究,当固定不变,把扩大为时,求的度数;
探索发现:(3)在完成(1)(2)时,小亮发现与之间存在一个固定的数量关系.你认为小亮说的对吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
A. 20 B. 25 C. 30 D. 32
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com