精英家教网 > 初中数学 > 题目详情

已知:正比例函数的图象于反比例函数的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式.

解析试题分析:此题只要求出M点的坐标,就解决问题了,根据M点在正比例函数y=k1x的图象与反比例函数的图象上,把M点坐标用a表示出来,又根据△OMN的面积等于2,求出a值,从而求出M点坐标.
试题解析:∵MN⊥x轴,点M(a,1),∴SOMN=,∴,∴M(4,1),∵正比例函数的图象与反比例函数的图象交于点M(4,1),∴,解得,∴正比例函数的解析式是,反比例函数的解析式是
考点:反比例函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

六•一儿童节,小文到公园游玩,看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积相等,比如:A、B、C是弯道MN上任三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等. 爱好数学的他建立了平面直角坐标系(如图).图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米),OG=GH=HI.
(1)求S1和S3的值;
(2)设T是弯道MN上的任一点,写出y关于x的函数关系式;
(3)公园准备对区域MPOQN内部进行绿化改选,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,反比例函数y=(k≠0)的图象过等边三角形AOB的顶点A,已知点B(﹣2,0)

(1)求反比例函数的表达式;
(2)若要使点B在上述反比例函数的图象上,需将△ABC向上平移多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知图中的曲线是函数 (m为常数)图象的一支.

(1)求常数m的取值范围;
(2)若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:

(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=16时,大棚内的温度约为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知双曲线上一点M(1,m)和双曲线上一点N(n,3).
(1)求m、n的值;
(2)求△OMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线AB过点A(m,0),B(0,n)(其中m>0,n>0).反比例函数的图象与直线AB交于C,D两点,连接OC,OD.

(1)已知m+n=10,△AOB的面积为S,问:当n为何值时,S取最大值?并求这个最大值;
(2)若m=8,n=6,当△AOC,△COD,△DOB的面积都相等时,求p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线与反比例函数的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(-1,m).

(1)求反比例函数的解析式;
(2)若点P(n,1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图像经过线段BC的中点D.

(1)求k的值;
(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。

查看答案和解析>>

同步练习册答案