精英家教网 > 初中数学 > 题目详情
(本题10分)问题情境


已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
①填写下表,画出函数的图象:
x
……



1
2
3
4
……
y
……
 
 
 
 
 
 
 
……
 

2

 
②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过
配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
解:⑴①,2,




函数的图象如图.

②本题答案不唯一,下列解法供参考.
时,增大而减小;当时,增大而增大;当时函数的最小值为2.

=
=
=
=0,即时,函数的最小值为2.
⑵当该矩形的长为时,它的周长最小,最小值为.解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题10分)问题情境

已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①填写下表,画出函数的图象:

x

……

1

2

3

4

……

y

……

 

 

 

 

 

 

 

……

 

 

 

2

 
②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过

配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年浙江省衢州华外九年级上学期第二次质量检测数学卷 题型:解答题

(本题10分)问题情境


已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
①填写下表,画出函数的图象:

x
……



1
2
3
4
……
y
……
 
 
 
 
 
 
 
……
 

2

 
②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过
配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:初中数学 来源:2011-2012年浙江省衢州华外九年级上学期第二次质量检测数学卷 题型:解答题

(本题10分)问题情境

已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①填写下表,画出函数的图象:

x

……

1

2

3

4

……

y

……

 

 

 

 

 

 

 

……

 

 

 

2

 
②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过

配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省盐城市九年级下学期期中考试数学卷 题型:选择题

(本题满分12分)

问题情境

已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的长为x,周长为y,则yx的函数关系式为

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①   填写下表,画出函数的图象:

x

1

2

3

4

y

 

 

 

 

 

 

 

②观察图象,写出该函数两条不同类型的性质;

③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案