【题目】某垃圾处理厂,对不可回收垃圾的处理费用为90元/吨,可回收垃圾的分拣处理费用也为90元/吨,分拣后再被相关企业回收,回收价格如下表:
垃圾种类 | 纸类 | 塑料类 | 金属类 | 玻璃类 |
回收单价(元/吨) | 500 | 800 | 500 | 200 |
据了解,可回收垃圾占垃圾总量的60%,现有三个小区12月份产生的垃圾总量分别为100吨,100吨和吨.
(1)已知小区金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍.设塑料类的质量为吨,则小区可回收垃圾有______吨,其中玻璃类垃圾有_____吨(用含的代数式表示)
(2)小区纸类与金属类垃圾总量为35吨,当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元.求12月份该小区可回收垃圾中塑料类垃圾的质量.
(3)小区发现塑料类与玻璃类垃圾的回收总额恰好相等,所有可回收垃圾的回收总金额为12000元.设该小区塑料类垃圾质量为吨,求与的数量关系.
【答案】(1)60,;(2)小区12月份可回收垃圾中塑料垃圾质量是5吨;(3).
【解析】
(1)用A小区的垃圾总量乘以可回收垃圾所占百分比即可求出可回收垃圾的数量,用x表示出金属类垃圾和纸类垃圾的质量,即可求出玻璃类垃圾数量;
(2)设12月份小区塑料类垃圾质量为吨,可用x表示出玻璃类垃圾的质量,根据当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元列方程求出x的值即可;
(3)根据塑料类与玻璃类垃圾的回收总额恰好相等可用a表示出玻璃类垃圾的质量,即可求出纸类与金属类垃圾总质量,根据所有可回收垃圾的回收总金额为12000元即可得出a与m的数量关系.
(1)∵可回收垃圾占垃圾总量的60%,A小区产生的垃圾总量100吨,
∴可回收垃圾占垃圾总量为:100×60%=60(吨),
∵金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍.塑料类的质量为吨,
∴金属类垃圾质量是5x,纸类垃圾质量是2x,
∴玻璃类垃圾有:60-5x-2x-x=(60-8x)吨,
故答案为:60,
(2)设12月份小区塑料类垃圾质量为吨,
∴玻璃类垃圾质量为吨,即吨,
∴
解得:
答:小区12月份可回收垃圾中塑料垃圾质量是5吨.
(3)设玻璃类垃圾质量为y吨,
∵塑料类垃圾质量为吨,塑料类与玻璃类垃圾的回收总额相等,
∴200y=800a,
解得:y=4a,
∴玻璃类垃圾质量为吨,
∴纸类与金属类垃圾总质量为吨,
∵所有可回收垃圾的回收总金额为12000元,
∴,
化简得:.
科目:初中数学 来源: 题型:
【题目】小华周一早展起来,步行到离家900米的学校去上学,到了学校他发现数学课本忘在家中了,于是他立即按照原路步行回家,拿到数学课本后立即按照原路改骑自行车返回学校,已知小华骑自行车的速度是他步行速度的3倍,步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟. 小华骑自行车的速度是多少米每分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为6cm,点E,M分别是线段BD,AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.
(1)如图①,若点M与点D重合,求证:AF=MN;
(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为ts.
①设BF=ycm,求y关于t的函数表达式;
②当BN=2AN时,连接FN,求FN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李老师准备购买若干个某种笔记本奖励学生,甲、乙两家商店都有足够数量的这种笔记本,其标价都是每个6元,甲商店的促销方案是:购买这种笔记本数量不超过5个时,原价销售;超过5个时,超过部分按原价的7折销售.乙商店的销售方案是:一律按标价的8折销售.
(1)若李老师要购买个这种笔记本,请用含的式子分别表示李老师到甲商店和乙商店购买全部这种笔记本所需的费用.
(2)李老师购买多少个这种笔记本时,到甲、乙两家商店购买所需费用相同?
(3)若李老师需要20个这种笔记本,则到甲、乙哪家商店购买更优惠?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直接写出结果:
(1)﹣1+2=_____;
(2)﹣1﹣1=_____;
(3)(﹣3)3=_____;
(4)6÷(﹣1)=_____;
(5)(﹣1)2n﹣(﹣1)2n﹣1=_____(n为正整数);
(6)方程4x=0的解为_____;
(7)方程﹣x=2的解为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.
(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;
(2)当x、y互为倒数时,求此时“囧”的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.
阅读下列材料:
问题:利用一元一次方程将0.化成分数.
解:设0.=x.
方程两边都乘以10,可得10×0.=10x
由0.=0.777…,可知10×0. =7.777…=7+0.
即7+x=10x.(请你体会将方程两边都乘以10起到的作用)
可解得x=,即0.=.
(1)填空:将0.写成分数形式为 .
(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com