【题目】如图,射线AM∥BN,点E,F,D在射线AM上,点C在射线BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求证:AB∥CD.
(2)如果平行移动CD,那么∠AFB与∠ADB的比值是否发生变化?若变化,找出变化规律;若不变,求出这两个角的比值.
(3)如果∠A=100°,那么在平行移动CD的过程中,是否存在某一时刻,使∠AEB=∠BDC?若存在,求出此时∠AEB的度数;若不存在,请说明理由.
【答案】(1)证明见解析;(2)不变,理由见解析;(3)存在,60°
【解析】
(1)根据平行线的性质,以及等量代换证明∠A+∠ABC=180°,然后可证得AB∥CD;
(2)根据三角形外角的性质可直接得出结论;
(3)根据平行线的性质得到∠ABC=80°,设∠CBD=∠FBD=∠FDB=x°,根据角平分线的性质得到∠EBD=40°,于是得到∠AEB=x°+40°.得到∠BDC=80°-x°,根据∠AFC=∠ADB,列方程即可得到结论.
(1)证明:∵AM∥BN,
∴∠A+∠ABC=180°,
又∵∠BCD=∠A,
∴∠ABC+∠BCD=180°,
∴AB∥CD;
(2)∵AM∥BN,∴∠ADB=∠DBC,∵BD平分∠FBC,∴∠FBD=∠DBC,
∴∠FBD=∠FDB,
当CD向右平移时,∠FBD增大,∠ABC不变,
∵∠FBD=∠FDB,∠BFA=∠FBD+∠FDB,∴∠AFB:∠ADB=2:1;
(3)存在,
理由:∵∠A=100°,∴∠ABC=80°,
设∠CBD=∠FBD=∠FDB=x°,
∵BE平分∠ABF,BD平分∠FBC,
∴∠EBD=40°
∴∠AEB=x°+40°.
∵AM∥BN,∠BCD=100°,
∴∠CDA=80°,
∴∠BDC=80°-x°,
∵∠AEB=∠BDC,
∴x°+40°=80°-x°,解得x=20°,
∴∠AEB=20°+40°=60°.
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;
(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.
①用含x的代数式表示∠EOF;
②求∠AOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1+∠2=180°,∠DAE=∠BCF.
(1)试判断直线AE与CF有怎样的位置关系?并说明理由;
(2)若∠BCF=70°,求∠ADF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD中,连接对角线BD,作AE⊥BD于E,CF⊥BD于F,
(1)求证:△AED≌△CFB;
(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)将一张长方形纸片按如图1所示的方式折叠,BC、BD为折痕,求∠CBD的度数;
(2)将一张长方形纸片按如图2所示的方式折叠,BC、BD为折痕,若∠A′BE′=50°,求∠CBD的度数;
(3)将一张长方形纸片按如图3所示的方式折叠,BC、BD为折痕,若∠A′BE′=α,请直接写出∠CBD的度数(用含α的式子表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com