精英家教网 > 初中数学 > 题目详情
1.解方程或不等式组.
(1)-x+3x-4=0.
(2)解不等式组$\left\{\begin{array}{l}\frac{x}{2}>-1\\ 2x+1≥5(x-1)\end{array}\right.$,并写出它的所有所有整数解.

分析 (1)根据解一元一次方程的步骤可得;
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.

解答 解:(1)2x=4
x=2;

(2)由$\frac{x}{2}$>-1,得:x>-2,
由2x+1≥5(x-1),得:x≤2,
所以不等式组的解集为:-2<x≤2
它的整数解为-1、0、1、2.

点评 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,将?ABCD的边DC延长至点E,使DC=CE,连接AE,交边BC于点F.
(1)求证:四边形ABEC是平行四边形;
(2)连接AC、BE,若∠AFC=2∠D,求证:四边形ABEC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.永州市是一个降水丰富的地区,今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:
日期x1234
水位y(米)20.0020.5021.0021.50
(1)请建立该水库水位y与日期x之间的函数模型;
(2)请用求出的函数表达式预测该水库今年4月6日的水位;
(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.综合实践课,小明所在小组要测量护城河的宽度,如图所示是护城河的一段,两岸AB∥CD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留整数).
(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程(组)
(1)$\frac{1}{3}$x-2=$\frac{x+1}{2}$
(2)$\left\{\begin{array}{l}{2x-y=8}\\{3x+2y=5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求代数式的值.($\frac{2}{a+1}$+$\frac{a+2}{{a}^{2}-1}$)÷$\frac{a}{a-1}$,其中a=tan60°-sin30°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y℃与向上攀登的高度x km的几组对应值如表:
向上攀登的高度x/km0.51.01.52.0
气温y/℃2.0-0.9-4.1-7.0
若每向上攀登1km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km时,登山队所在位置的气温约为-10℃.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程或方程组:
(1)4(x-1)-$\frac{1}{2}$x=2(x+$\frac{1}{2}$);
(2)$\left\{\begin{array}{l}{3m-4n=7}\\{9m-10n-25=0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.一个多边形的内角和加上一个外角后得650°,则这一个外角是110°,这个多边形是五边形.

查看答案和解析>>

同步练习册答案