精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.
(1)说明点D在△ABE的外接圆上;
(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.

【答案】分析:(1)根据题中条件AB=AD,∠BAO=∠DAO,AO=AO可证明△AOB≌△AOD,所以OD=OB,可证点D在△ABE的外接圆上;
(2)根据∠C=90°,可得∠CED+∠CDE=90°;利用∠ODE=∠DEC,可知∠ODC=∠CDE+∠ODE=∠CDE+∠CED=90°,即CD与△ABE的外接圆相切.
解答:证明:(1)证法一:∵∠B=90°,
∴AE是△ABE外接圆的直径.
取AE的中点O,则O为圆心,连接OB、OD.
在△AOB和△AOD中,

∴△AOB≌△AOD.
∴OD=OB.
∴点D在△ABE的外接圆上.

证法二:∵∠B=90°,
∴AE是△ABE外接圆的直径.
在△ABE和△ADE中,

∴△ABE≌△ADE.
∴∠ADE=∠B=90°.
取AE的中点O,则O为圆心,连接OD,则OD=AE.
∴点D在△ABE的外接圆上.

(2)证法一:直线CD与△ABE的外接圆相切.
理由:∵AB∥CD,∠B=90度.∴∠C=90°.
∴∠CED+∠CDE=90°.
又∵OE=OD,
∴∠ODE=∠OED.
又∠AED=∠CED,
∴∠ODE=∠DEC.
∴∠ODC=∠CDE+∠ODE=∠CDE+∠CED=90°.
∴CD与△ABE的外接圆相切.

证法二:直线CD与△ABE的外接圆相切.
理由:∵AB∥CD,∠B=90度.∴∠C=90°.
又∵OE=OD,
∴∠ODE=∠OED.
又∠AED=∠CED,
∴∠ODE=∠DEC.
∴OD∥BC.
∴∠ODC=90°.
∴CD与△ABE的外接圆相切.
点评:主要考查了直线与圆的位置关系和点与圆的位置关系.利用三角形全等的方法来证明相等的线段和相等的角是常用的方法之一,要会灵活运用.
并能根据圆心到直线的距离来判断直线与圆的位置关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案