精英家教网 > 初中数学 > 题目详情
三角形外心我们可以理解为:到三角形三个顶点距离相等的点称三角形的外心,由此,我们定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
(1)应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=
12
AB,求∠APB的度数.
(2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.
分析:(1)连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;
(2)先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况,根据三角形的性质计算即可得解.
解答:解:(1)①若PB=PC,连接PB,则∠PCB=∠PBC,
∵CD为等边三角形的高,
∴AD=BD,∠PCB=30°,
∴∠PBD=∠PBC=30°,
∴PD=
3
3
DB=
3
6
AB,
与已知PD=
1
2
AB矛盾,
∴PB≠PC,
②若PA=PC,连接PA,同理可得PA≠PC,
③若PA=PB,由PD=
1
2
AB,得PD=BD,
∴∠APD=45°,
故∠APB=90°;

(2)解:∵BC=5,AB=3,
∴AC=
BC2-AB2
=4,
①若PB=PC,设PA=x,则x2+32=(4-x)2
∴x=
7
8
,即PA=
7
8

②若PA=PC,则PA=2,
③若PA=PB,由图知,在Rt△PAB中,不可能.
故PA=2或
7
8
点评:本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1:等边△ADE可以看作由等边△ABC绕顶点A经过旋转相似变换得到.但是我们注意到图形中的△ABD和△ACE的关系,上述变换也可以理解为图形是由△ABD绕顶点A旋转60°形成的.于是我们得到一个结论:如果两个正三角形存在着公共顶点,则该图形可以看成是由一个三角形绕着该顶点旋转60°形成的.
①利用上述结论解决问题:如图2,△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BFC都是等边三角形,求四边形ADFE的面积;
②图3中,△ABC∽△ADE,AB=AC,∠BAC=∠DAE=θ,仿照上述结论,推广出符合图3的结论.(写出结论即可)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

式子
a2+b2
可以理解为“以a、b为直角边长的直角三角形的斜边长”,利用这个知识,我们可以恰当地构造图形来解决一些数学问题.比如在解“已知a+b=2,则
a2+1
+
b2+4
的最小值为
13
13
”时,我们就可以构造两个直角三角形,转化为“求两个直角三角形的斜边和最小是多少”的问题.请你根据所给图形和题意,在横线上填上正确的答案.

查看答案和解析>>

科目:初中数学 来源:2012年理科实验班自主招生考试数学试卷(一)(解析版) 题型:解答题

如图1:等边△ADE可以看作由等边△ABC绕顶点A经过旋转相似变换得到.但是我们注意到图形中的△ABD和△ACE的关系,上述变换也可以理解为图形是由△ABD绕顶点A旋转60°形成的.于是我们得到一个结论:如果两个正三角形存在着公共顶点,则该图形可以看成是由一个三角形绕着该顶点旋转60°形成的.
①利用上述结论解决问题:如图2,△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BFC都是等边三角形,求四边形ADFE的面积;
②图3中,△ABC∽△ADE,AB=AC,∠BAC=∠DAE=θ,仿照上述结论,推广出符合图3的结论.(写出结论即可)

查看答案和解析>>

科目:初中数学 来源:2011年安徽省蚌埠市普通高中自主招生考试数学试卷(解析版) 题型:解答题

如图1:等边△ADE可以看作由等边△ABC绕顶点A经过旋转相似变换得到.但是我们注意到图形中的△ABD和△ACE的关系,上述变换也可以理解为图形是由△ABD绕顶点A旋转60°形成的.于是我们得到一个结论:如果两个正三角形存在着公共顶点,则该图形可以看成是由一个三角形绕着该顶点旋转60°形成的.
①利用上述结论解决问题:如图2,△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BFC都是等边三角形,求四边形ADFE的面积;
②图3中,△ABC∽△ADE,AB=AC,∠BAC=∠DAE=θ,仿照上述结论,推广出符合图3的结论.(写出结论即可)

查看答案和解析>>

同步练习册答案