精英家教网 > 初中数学 > 题目详情
(2009•衢州)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.
(1)在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?
(2)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?
(3)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

【答案】分析:本题中的(1)(2)可观察统计图求出答案;(3)中可设每天传染中平均一个人传染了x个人,则由最初的一个人经过一天后传染给了x个人,即此时有(1+x)个人患病,第二天这(1+x)个人每人又传染给了x个人,即新增病例x(1+x)个,此时共有患者[1+x+x(1+x)]名,进而可列出方程,求出答案.
解答:解:(1)18日新增甲型H1N1流感病例最多,增加了75人;

(2)平均每天新增加=52.6人,继续按这个平均数增加,到5月26日可达52.6×5+267=530人;

(3)设每天传染中平均一个人传染了x个人,则
1+x+x(x+1)=9,(x+1)2=9,
解得x1=2,x2=-4(舍去).
所以每天传染中平均一个人传染了2个人,且再经过5天的传染后,这个地区患甲型H1N1流感的人数为(1+2)7=2187(或1+2+6+18+54+162+486+1458=2187),即一共将会有2187人患甲型H1N1流感.
点评:此类题目往往和统计图一块出现,需要仔细分析统计图,求出答案,一般来说,这种题目的难度不大,牵涉到传染问题时,要分析清楚传染的基础及新增病例.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2009•衢州)当a=3,b=4时,a2+b2+2ab=
49
49

查看答案和解析>>

科目:初中数学 来源:2010年新人教版中考数学模拟试卷(4)(解析版) 题型:解答题

(2009•衢州)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
  第1天第2天 第3天 第4天  第5天 第6天 第7天第8天 
 售价
x(元/千克)
 400  250 240 200 150 125 120
 销售量
y(千克)
 30 40 48  60 80 96 100
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?

查看答案和解析>>

科目:初中数学 来源:2009年浙江省舟山市中考数学试卷(解析版) 题型:解答题

(2009•衢州)如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2)平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省衢州市中考数学试卷(解析版) 题型:解答题

(2009•衢州)如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2)平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省衢州市中考数学试卷(解析版) 题型:解答题

(2009•衢州)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
  第1天第2天 第3天 第4天  第5天 第6天 第7天第8天 
 售价
x(元/千克)
 400  250 240 200 150 125 120
 销售量
y(千克)
 30 40 48  60 80 96 100
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?

查看答案和解析>>

同步练习册答案