精英家教网 > 初中数学 > 题目详情
17.已知三个连续整数的和小于10,且最小的整数大于-1,则这三个连续整数中,最大的整数为9,符合条件的三个连续的整数共有3组.

分析 此题可根据条件列不等式,求得未知数的取值范围,根据取值范围确定整数的值.

解答 解:设最小的整数是x,
则x+x+1+x+2<10且x>-1,
解得-1<x<$\frac{7}{3}$,
则最小的整数可能是0,1,2,
这三个连续整数的和可能是3,6,9.
符合的三个连续整数共3组.
故答案为:9;3.

点评 考查了一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系,列出不等式,再求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.如图,直线y=-$\frac{4}{3}$x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则△AMO的面积为9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线 m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=120°.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明FD=FE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,直线AB与直线AC分别交于x轴,y轴于点B、C、A,过点B作BD⊥AC于D,交y轴与点E,若∠BAC=45°,点B、C、E的坐标分别B(-3,0)、C(2,0)、E(0,1),过点A作AF∥x轴,交OD的延长线于点F,连接CF,在平面直角坐标系中,是否存在点K,使△OKF与△OCF全等?若存在,求出点K的坐标并画出图形;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知点P是线段AB的黄金分割点,且AP>PB,设以AP为边长的正方形ACDP的面积为S1,以BF,AB的长为邻边的矩形AEFB的面积为S2,BF=PB,试问S1与S2有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.-1.5的倒数是(  )
A.0B.-1.5C.1.5D.-$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:($\frac{{x}^{2}}{x-2}$+$\frac{4}{2-x}$)•$\frac{1}{{x}^{2}+2x}$,其中x=tan60°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC;④OE=OD.从上述四个条件中,选取两个条件,不能判定△ABC是等腰三角形的是(  )
A.①②B.①③C.③④D.②③

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.a2+b2=(a+b)2+(-2ab)=(a-b)2+2ab;
x2+$\frac{1}{{x}^{2}}$=(x+$\frac{1}{x}$)2-2=(x-$\frac{1}{x}$)2+2.

查看答案和解析>>

同步练习册答案