【题目】如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为_____.
【答案】(8, )
【解析】解:∵反比例函数(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为
,设D(m,
),由题可得OA的解析式为y=
x,AO∥BC,∴可设BC的解析式为y=
x+b,把D(m,
)代入,可得
m+b=
,∴b=
﹣
m,∴BC的解析式为y=
x+
﹣
m,令y=0,则x=m﹣
,即OC=m﹣
,∴平行四边形ABCO中,AB=m﹣
,如图所示,过D作DE⊥AB于E,过A作AF⊥OC于F,则△DEB∽△AFO,∴
,而AF=12,DE=12﹣
,OA=
=13,∴DB=13﹣
,∵AB=DB,∴m﹣
=13﹣
,解得m1=5,m2=8,又∵D在A的右侧,即m>5,∴m=8,∴D的坐标为(8,
).故答案为:(8,
).
科目:初中数学 来源: 题型:
【题目】在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某移动通讯公司提供了A,B两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误的是( )
A. 若通话时间少于120分,则A方案比B方案便宜20元
B. 若通话时间超过200分,则B方案比A方案便宜12元
C. 若通讯费用为60元,则B方案比A方案的通话时间多
D. 若两种方案通讯费用相差10元,则通话时间是145分或185分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=k1x+b与双曲线y=相交于点A(1,2),B(m,-1)两点.
(1)分别求直线和双曲线的表达式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,现有①点P在∠BAC的平分线上; ②AS=AR;③QP∥AR; ④△BRP≌△QSP四个结论.则对四个结论判断正确的是( )
A. 仅①和②正确 B. 仅②③正确 C. 仅①和③正确 D. 全部都正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | 8 | 8 | |
乙 | 8 | 8 | 2.2 |
丙 | 6 | 3 |
(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.
(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;
(2)求证:AD=BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,对角线AC,BD相交于O点,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于Q点.
(1)求证:四边形PBQD为平行四边形.
(2)若AB=3cm,AD=4cm,P从点A出发.以1cm/s的速度向点D匀速运动.设点P的运动时间为ts,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com