精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是(  )
A.③④B.②③C.①④D.①②③

①当x=1时,结合图象y=a+b+c<0,故此选项正确;
②当x=-1时,图象与x轴交点负半轴明显小于-1,∴y=a-b+c>0,故本选项错误;
③由抛物线的开口向上知a>0,
∵对称轴为1>x=-
b
2a
>0,
∴2a>-b,
即2a+b>0,
故本选项错误;
④对称轴为x=-
b
2a
>0,
∴a、b异号,即b<0,
图象与坐标相交于y轴负半轴,
∴c<0,
∴abc>0,
故本选项正确;
∴正确结论的序号为①④.
故选:C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:
①b2>4ac;
②abc>0;
③2a-b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中结论正确的是______.(填正确结论的序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读以下材料:
定义:对于三个数a、b、c,用max{a,b,c}表示这三个数中的最大数.
例如:①max{-1,2,3}=3;②max{-1,2,a}=
a(a≥2)
2(a<2)

根据以上材料,解决下列问题:
(1)如果max{2,2x+2,4-2x}=2x+2,求x的取值范围;
(2)在同一平面直角坐标系中分别作出函数y=x+1,y=(x-1)2,y=2-x的图象(不需列表),通过观察图象,填空:max{x+1,(x-1)2,2-x}的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2)且与x轴交点的横坐标分别为x1,x2,其中-2<x1<-1,0<x2<1,下列结论:①b<0;②a+b+c<0;③4a-2b+c<0;④2a-b<0,其中正确的有______.(填代号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是(  )
A.0<t<1B.0<t<2C.1<t<2D.-1<t<1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为坐标平面上二次函数y=ax2+bx+c的图形,且此图形通(-1,1)、(2,-1)两点.下列关于此二次函数的叙述,何者正确(  )
A.y的最大值小于0B.当x=0时,y的值大于1
C.当x=1时,y的值大于1D.当x=3时,y的值小于0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①4a-b<0②abc<0③a+b+c<0④a-b+c>0⑤4a+2b+c>0,其中错误的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=-3(x-1)2+2关于y轴翻折得到的二次函数表达式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2+4x+3与y轴交点坐标是______.

查看答案和解析>>

同步练习册答案