精英家教网 > 初中数学 > 题目详情
17.如图,在菱形ABCD中,AB=2$\sqrt{3}$,∠ABC=60°,把菱形ABCD绕点B顺时针旋转α得到菱形A′BC′D′,其中点D′落在BC的延长线上,点C的运动路径为$\widehat{CC′}$,则图中阴影部分的面积为3$\sqrt{3}$-π.

分析 根据菱形及旋转性质可得∠C′BC=∠A′BA=α=30°、BC′=BC=2$\sqrt{3}$,作C′E⊥BD′于点E,在RT△BC′E中可得BC、C′E的长度,由等腰三角形可知BD′=2BC,最后根据阴影部分面积=S△BC′D′-S扇形CBC′列式计算可得.

解答 解:∵四边形ABCD是菱形,∠ABC=60°,
∴∠A=120°,AB=BC=2$\sqrt{3}$
又∵菱形A′BC′D′是由菱形ABCD绕点B顺时针旋转α得到,
∴∠A′=∠A=120°,A′B=A′D′,∠C′BC=∠A′BA=α,
∴∠C′BC=∠A′BA=α=30°,BC′=BC=2$\sqrt{3}$,
如图,过点C′作C′E⊥BD′于点E,

在RT△BC′E中,BE=BC′•cos∠C′BC=2$\sqrt{3}$•$\frac{\sqrt{3}}{2}$=3,
C′E=BC′sin∠C′BC=2$\sqrt{3}$×$\frac{1}{2}$=$\sqrt{3}$,
∴BD′=2BC=6,
则阴影部分面积=S△BC′D′-S扇形CBC′
=$\frac{1}{2}$×6×$\sqrt{3}$-$\frac{30•π•(2\sqrt{3})^{2}}{360}$
=3$\sqrt{3}$-π,
故答案为:3$\sqrt{3}$-π.

点评 本题主要考查了菱形及旋转的性质、扇形面积的计算,根据题意知阴影部分面积=S△BC′D′-S扇形CBC′是解题的根本,熟练根据菱形及旋转性质求得所需线段的长和角的度数是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.-$\frac{1}{2016}$的相反数是(  )
A.$\frac{1}{2016}$B.-$\frac{1}{2016}$C.2016D.-2016

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,四边形ABCD为正方形.在边AD上取一点E,连接BE,使∠AEB=60°.
(1)利用尺规作图补全图形;(要求:保留作图痕迹,并简述作图步骤)
(2)取BE中点M,过点M的直线交边AB,CD于点P,Q.
①当PQ⊥BE时,求证:BP=2AP;
②当PQ=BE时,延长BE,CD交于N点,猜想NQ与MQ的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某外贸企业的职工的工资如下表:
岗位董事长副董事长董事总经理经理部门A部门B部门C部门D部门E
人数113145122021
月工资数(元)15000120001000090004000200018001500800700
(1)求月工资的平均数;工厂投资者用这个平均数作为代表数,这是为什么?
(2)求月工资的众数;工会主席用众数作为代表数,这是为什么?
(3)求月工资的中位数;税务工作人员用中位数作为代表数,这是为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知在△EDF中,∠EDF=90°,DE=DF,A是EF上的点,以AD为边作正方形ABCD,它的边BC交EF于G点,连接FC.
(1)求证:FC=EA;
(2)若EA=3,AD=6,求GF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.一次函数图象与x轴正半轴交于点A,与y轴负半轴交于点B,与正比例函数y=$\frac{2}{3}$x的图象交于点C,若OB=4,C点横坐标为6.
(1)求一次函数解析式;
(2)求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知一次函数y=k1x+b的图象分别x轴,y轴交于A、B两点,且与反比例函数y=$\frac{{k}_{2}}{x}$交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OD=1,OE=$\sqrt{10}$,cos∠AOE=$\frac{3\sqrt{10}}{10}$
(1)求反比例函数与一次函数的解析式;
(2)求△OCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,若P为AB边上任意一点,延长PD到E,使DE=2PD,再以PE,PC为边作平行四边形PCQE,则对角线PQ的长的最小值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.人口老龄化是全世界热点问题.为了让学生感受到人口老龄化所带来的一系列社会问题,从而渗透尊老、敬老教育,大庆市萨尔图区某中学组织该校初一年级学生开展了一项综合实践活动.该校初一年级的全体学生分别深入府明社区的两个小区调查每户家庭老年人的数量(60岁以上的老人).根据调查结果,该校学生将数据整理后绘制成的统计图如图所示,其中A组为1位老人/户,B组为2位老人/户,C组为3位老人/户,D组为4位老人/户,E组为5位老人/户,F组为6位老人/户.
请根据上述统计图完成下列问题:
(1)这次共调查了400户家庭;
(2)每户有六位老人所占的百分比为8%;
(3)请把条形统计图补充完整;
(4)本次调查的中位数落在C组内,众数落在B组;
(5)若萨尔图区约有10万户家庭,请你估计其中每户4位老人的家庭有多少户?

查看答案和解析>>

同步练习册答案