精英家教网 > 初中数学 > 题目详情

等腰三角形中,有一内角为40°,则它的另外两个内角分别是

A.40°、50°B.40°、80°C.40°、100°或70°、70°D.40°、100°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一个盒子中有4张完全相同的卡片,分别写有2cm,3cm,4cm和5cm,盒子外有2张卡片,分别写有3cm和5cm.现随机从盒内取出一张卡片,与盒子外两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,求这三条线段能构成等腰三角形的概率?

查看答案和解析>>

科目:初中数学 来源: 题型:

一口袋中有四根长度分别为1cm,3cm,4cm和5cm的细木棒,小明手中有一根长度为3cm的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:
(1)求这三根细木棒能构成三角形的概率;
(2)求这三根细木棒能构成直角三角形的概率;
(3)求这三根细木棒能构成等腰三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

一个盒子中装有四张完全相同的卡片,分别写着2cm,3cm,4cm和5cm,盒子外有两张卡,分别写着3cm和5cm.现随机从盒内取出一张卡片,与盒子外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,解答下列问题.
(1)求这三条线段能构成三角形的概率;
(2)求这三条线段能构成等腰三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县一模)如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.
下面的证法供你参考:
把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
实践探索:
(1)请你仿照上面的思路,探索解决下面的问题:
如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>
2
AD.
(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.
创新应用:
(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南通一模)如图1,抛物线y=nx2-11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.
(1)填空:点B的坐标为(
(3,0)
(3,0)
),点C的坐标为(
(8,0)
(8,0)
);
(2)连接OA,若△OAC为等腰三角形.
①求此时抛物线的解析式;
②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

查看答案和解析>>

同步练习册答案