精英家教网 > 初中数学 > 题目详情
23、如图①,点O为线段MN的中点,PQ与MN相交于点O,且PM∥NQ,可证△PMO≌△QNO.根据上述结论完成下列探究活动:
探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论;
探究二:如图③,DE、BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=4,CF=2,求DF的长度.
分析:(1)如图2,分别延长DC、AE,交于G点,根据已知条件可以得到△ABE≌△GCE,由此得到AB=CG,又AB∥DC,∠BAE=∠EAF,利用平行线的性质和等腰三角形的判定定理可以证明AF=GF,利用这些即可证明题目的结论;
(2)如图3,分别延长CF、AE,交于G点,根据已知条件可以得到△ABE∽△GCE,由此得到AB:CG=BE:CE,由此可以求出CG,又AB∥FC,∠BAE=∠EAF,利用平行线的性质和等腰三角形的判定定理可以证明DF=GF,然后利用已知条件和这些即可解决问题.
解答:解:(1)AB=AF+CF.
如图2,分别延长DC、AE,交于G点,
根据图①得△ABE≌△GCE,
∴AB=CG,
又AB∥DC,
∴∠BAE=∠G
而∠BAE=∠EAF,
∴∠G=∠EAF,
∴AF=GF,
∴AB=CG=GF+CF=AF+CF;
 (2)如图3,分别延长CF、AE,交于G点,
根据得△ABE∽△GCE,
∴AB:CG=BE:CE,
而BE:EC=1:2,AB=4,
∴CG=8,
又AB∥FC,
∴∠BAE=∠G,
而∠BAE=∠EDF,
∴∠G=∠EDF,
∴DF=GF,
而CF=2,
∴DF=CG-CF=8-2=6.
点评:此题主要考查了全等三角形的性质与判定及相似三角形的性质与判定,此题是探究题目,首先正确理解给出的基本图形的隐含结论,然后结合要探究的图形作辅助线把探究的问题转换为已知的问题解决即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、操作:如图1,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图1画出一对以点O为对称中心的全等三角形.
探究:如图2,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、
FC之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,求证:AN=BM,这时可以证明
 
 
,得到AN=BM;
(2)如果去掉“点C为线段AB上一点”的条件,而是让△CBN绕点C精英家教网旋转成图2的情形,还有“AN=BM”的结论吗?如果有,请给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图1,点C为线段AB上一点,△ACM和△CBN都是等边三角形,AN、BM交于点P,由△BCM≌△NCA,易证结论:①BM=AN.

(1)请写出除①外的两个结论:
∠MBC=∠ANC
∠BMC=∠NAC

(2)求出图1中AN和BM相交所得最大角的度数
120°

(3)将△ACM绕C点按顺时针方向旋转180°,使A点落在BC上,请对照原题图形在图2中画出符合要求的图形(不写作法,保留痕迹);
(4)探究图2中AN和BM相交所得的最大角的度数有无变化
不变
(填变化或不变);
(5)在(3)所得到的图形2中,请探究“AN=BM”这一结论是否成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=-
1
2
x2+bx+c经过C、B两点,与x轴的另一交点为D.
(1)点B的坐标为(
6
6
2
2
),抛物线的表达式为
y=-
1
2
x2+
9
2
x-7
y=-
1
2
x2+
9
2
x-7

(2)如图2,求证:BD∥AC;
(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.

查看答案和解析>>

同步练习册答案