【题目】如图,已知四边形ABCD中,AD∥BC,BC=3,边AD在x轴上,点C在y轴上,点D坐标为(2,0),直线l:y=-2x-10经过点A、B.
(1)求四边形ABCD的面积;
(2)将直线l向右平移,平移后的直线与x轴交于点P,与直线BC交于点Q,设AP=t.直线l在平移过程中,是否存在t的值,使△PDQ为等腰三角形?若存在,求出t的值,若不存在,请说明理由;
(3)将直线l绕点A旋转,当直线l将四边形ABCD的面积分为1:3两部分时,请直接写出l与BC的交点M的坐标.
【答案】(1)20;(2)存在,t=2、3或7±2 ;(3)M1(-,-4),M2(,-4) .
【解析】
(1)根据函数解析式得到OA=5,求得AD=7,得到OC=4,于是得到结论;(2)需要分类讨论,要使△PDQ为等腰三角形,需分三种情况进行计算验证;(3)直线l将四边形ABCD的面积分为1:3两部分时,也是需要分类讨论,即直线l左侧部分面积:右侧部分面积=1:3和线l右侧部分面积:左侧部分面积=1:3,再结合相似三角形的判定和性质,三角形面积计算即可解答.
解:(1)在y=-2x-10中,当y=0时,x=-5,
∴A(-5,0),
∴OA=5,
∴AD=7,
把x=-3代入y=-2x-10得,y=-4,
∴OC=4,
∴四边形ABCD的面积=(3+7)×4=20;
故答案为:20;
(2)存在,理由如下:
∵四边形ABQP是平行四边形,∴PQ2=AB2=42+22=20,PD2=(7-t)2,DQ2=42+(5-t)2,
①当PQ2= PD2时,即20=(7-t)2,
解得:t1=7+2 , t2=7-2;
②当PQ2= DQ2时,即20=42+(5-t)2,
解得:t1=7(∵AD=7,∴t1=7时,P,D点重合,不符合题意,舍去) , t2=3;
③当PD2= DQ2时,即(7-t)2=42+(5-t)2,
解得:t=2,
综上所述:当t=2,3或7±2 时,△PDQ为等腰三角形;
(3)①如图:当点M在线段BC上时,即直线l左侧部分面积:右侧部分面积=1:3,
∴S△ABM=S四边形ABCD=5 ,∵OC=4,∴BM上的高hBM=4,
∴S△ABM=×BM×hBM=5,即×BM×4=5,解得BM=,
∴CM=BC-BM=3-=,
又∵BC∥x轴,C(0,-4),M点在第三象限,
∴M点的坐标为M1(- ,-4);
②如图:∵AD=7,OC=4,∴△ACD的面积=7×4÷2=14>5,
∴当直线l右侧部分面积:左侧部分面积=1:3时,点M就在点C的右侧,设此时AM与CD的交点为点N,△AND中AD边的高为hAD,△CNM中CM边的高为hCM,
此时:S△AND=×AD×hAD=5,即×7×hAD=5,解得:hAD=,
∵AD∥CM,AD=7,OC=4, CM上的高hCM =4- =, ∴△AND∽△MNC,
∴AD:CM= hAD: hCM,即:7:CM=:,解得:CM=,
∴M点的坐标为M1( ,-4);
科目:初中数学 来源: 题型:
【题目】(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;
(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE均为等腰直角三角形,连接BE,点F、G分别为AD、AC的中点,连接FG.在△ADE绕A旋转的过程中,当B、D、E三点共线时,AB=,AD=1,则线段FG的长为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?(用列方程的方法解答)
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A,B两种型号车的进货和销售价格如下表:
A型车 | B型车 | |
进货价格(元) | 1100 | 1400 |
销售价格(元) | 今年的销售价格 | 2000 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.
(1)求证:∠ACD=∠B;
(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;
①求tan∠CFE的值;
②若AC=3,BC=4,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画半圆,交直线l于点P1,交x轴正半轴于点O2,由弦P1O2和围成的弓形面积记为S1,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,由弦P2O3和围成的弓形面积记为S2,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4,由弦P3O4和围成的弓形面积记为S3;…按此做法进行下去,其中S2018的面积为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是半圆O的直径,OC⊥AB交半圆于点C,D是射线OC上一点,连结AD交半圆O于点E,连结BE,CE.
(1)求证:EC平分∠BED.
(2)当EB=ED时,求证:AE=CE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com