精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为1个长度单位每秒,以O为圆心、
3
为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第
 
秒.
分析:若以O为圆心、
3
为半径的圆在运动过程中与△ABC的边第二次相切,即为当点O在AC上,且和BC边相切的情况.作O′D⊥BC于D,则O′D=
3
,利用解直角三角形的知识,进一步求得O′C=2,从而求得O′A的长,进一步求得运动时间.
解答:精英家教网解:根据题意,则作O′D⊥BC于D,则O′D=
3

在Rt△O′CD中,∠C=60°,O′D=
3

∴O′C=2,
∴O′A=6-2=4,
∴以O为圆心、
3
为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第4秒.
故答案为:4.
点评:此题考查了直线和圆相切时数量之间的关系,能够正确分析出以O为圆心、
3
为半径的圆在运动过程中与△ABC的边第二次相切时的位置.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,△ABC为等边三角形,P为三角形内一点,将△ABP绕A点逆时针旋转60°后与△ACP′重合,若AP=3,则PP′=
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF;
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE.
①△ACD与△CBF是全等三角形吗?说说你的理由.
②ED=FC吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边△,EC=ED,∠CED=120゜,P为BD的中点,求证:AE=2PE.

查看答案和解析>>

同步练习册答案