精英家教网 > 初中数学 > 题目详情
(2011•峨眉山市二模)如图,以△ABC的边AB为直径作⊙O,BC与⊙O交于D,D是BC的中点,过D作DE⊥AC,交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,BD=8,求DE的长.
分析:(1)要证明切线,结合DE⊥AC,只需证明OD∥AC,显然根据三角形的中位线定理即可证明;
(2)连接AD,因为AB为圆的直径,所以∠ADB=90°利用勾股定理求出AD的长,根据(1)中的平行,易证明角相等.从而发现等腰三角形ABC,然后进行计算即可.
解答:(1)证明:连接OD;
∵BD=CD,AO=BO,
∴OD∥AC.
∵DE⊥AC,
∴OD⊥DE.
∴DE与⊙O相切;

(2)解:连接AD,
由(1)知,OD∥AC,
∴∠BDO=∠C.
∵OD=OB,
∴∠B=∠BDO,
∴∠B=∠C.
∴AC=AB.
∵AB=10,
∴AC=10,
∵AB为圆的直径,
∴∠ADB=90°,
∴AD=
AB 2-BD 2
=6,
∴CD=8,
∵S△ADC=
1
2
CD×AD=
1
2
AC×DE,
∴DE=
CD•AD
AC
=
8×6
10
=4.8.
点评:本题综合性较强,考查点较多,考查了切线的判定定理和性质定理、勾股定理,以及三角形的面积公式,要细心思考认真分析,思路还是比较好找的.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)如图,直线a,b被直线l所截,已知a∥b,∠1=132°,则∠2等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)下列运算中,错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)如图,A、B、C、D都在正方形网格点上,要使△ABC∽△PBD,则点P应在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)多项式①2x2-x,②(x-1)2-4(x-1)+4,③(x+1)2-4x(x+1)+4,④-4x2-1+4x;分解因式后,结果含有相同因式的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)CD是⊙O的直径,AB是一条弦(AB不是直径),已知CD⊥AB,垂足为F,CD=13,AB=12,则CF的长为(  )

查看答案和解析>>

同步练习册答案