精英家教网 > 初中数学 > 题目详情
15.下面方格中有一个菱形ABCD和点O,请你在方格中画出以下图形(只要求画出平移、旋转后的图形,不要求写出作图步骤和过程).
(1)画出菱形ABCD向右平移6格后的四边形A1B1C1D1
(2)画出菱形ABCD以点O为旋转中心,沿逆时针方向旋转90°后的四边形A2B2C2D2

分析 (1)根据网格结构找出点A、B、C、D平移后的对应点A1、B1、C1、D1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C、D绕点O逆时针旋转90°的对应点A2、B2、C2、D2的位置,然后顺次连接即可.

解答 解:(1)四边形A1B1C1D1如下图所示;
(2)四边形A2B2C2D2如下图所示.

点评 本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.当S△PQE:S△ABC=1:40时,求运动时间t.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,边长为2的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是4$\sqrt{2}$-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图(1),正方形被划分为16个全等三角形,将其中若干个三角形涂黑,且满足下列条件:
(1)涂黑部分的面积是原正方形面积的一半;
(2)涂黑部分成轴对称图形. 如图(2)是一种涂法,请在图(4)-(6)中分别设计另外三种涂法.[在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图(2)与图(3)].

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知:如图,正方形的顶点A在矩形DEFG的边EF上,矩形DEFG的顶点G在正方形的边BC上,正方形的边长为4,DG的长为6,则DE的长为$\frac{8}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?
(1)①请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程);
②说出该画法依据的定理.
(2)小明在此基础上进行了更深入的探究,
①在图3的画板内,作出“直线a、b所成的跑到画板外面去的角”的平分线c(已知这条线平分线经过点M).请你帮小明完成上面操作过程.(所有的线不能画到画板外,只能画在画板内)
②若直线a、b与画板的边直线l所成的钝角分别为130°、100°,试求①中所画的直线c与l所成的钝角.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知⊙O的半径为5,⊙P与⊙O外切于点A,经过点A的直线与⊙O、⊙P分别交于点B、C,tan∠OAB=$\frac{\sqrt{21}}{2}$.
(1)求AB的长;
(2)当∠OCA=∠OPC时,求⊙P的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知点A的坐标为(a,b),O为坐标原点,连结OA,将线段OA绕点O按逆时针方向旋转180°得OA1,则点A1的坐标为(  )
A.(-a,b)B.(a,-b)C.(-a,-b)D.(b,-a)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某机械租赁公司有同一型号的机械设备40套,经过一段时间的经营发现,当每套设备的月租金为270元时,恰好全部租出,在此基础上,当每套设备的月租金每提高10元时,这种设备减少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元)
(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费用;
(2)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;
(3)当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益为多少?

查看答案和解析>>

同步练习册答案