精英家教网 > 初中数学 > 题目详情
6.甲、乙两人分别开汽车和摩托车从A地出发沿同一条公路匀速前往B地,乙出发半小时后甲出发,设乙行驶的时间t(h),甲、乙两人之间的距离为y(km),y与t之间关系的图象如图所示.
(1)分别指出点E,F所表示的实际意义;
(2)分别求出线段DE,FG所在直线的函数表达式;
(3)分别求甲、乙两人行驶的速度.

分析 (1)根据图象中的信息即可得到结论;
(2)设直线DE的函数表达式为y=kx+b,直线FG的函数表达式为y1=k1x+b1,列方程组即可得到结论;
(3)设甲的速度为vkm/h,甲的速度为v乙km/h,根据图象信息得方程组即可得到结论.

解答 解:(1)点E表示的实际意义是甲、乙两人在乙出发2小时时相遇,此时两人之间的距离为0,F所表示的实际意义乙出发5小时时甲到达B地,此时两人之间的距离为60km;
(2)设直线DE的函数表达式为y=kx+b,
把(0.5,30),(2,0)代入得$\left\{\begin{array}{l}{0.5k+b=30}\\{2k+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-20}\\{b=40}\end{array}\right.$,
则直线DE的函数表达式为y=-20x+40,
设直线FG的函数表达式为y1=k1x+b1,把(5,60),(6,0)代入得$\left\{\begin{array}{l}{5{k}_{1}+{b}_{1}=60}\\{6{k}_{1}+{b}_{1}=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{k}_{1}=-60}\\{{b}_{1}=360}\end{array}\right.$,∴直线FG的函数表达式为y1=-60x+360;
(3)设甲的速度为vkm/h,甲的速度为v乙km/h,
根据图象得$\left\{\begin{array}{l}{(2-0.5){v}_{甲}-2{v}_{乙}=0}\\{(5-0.5){v}_{甲}=-5{v}_{乙}=60}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{v}_{甲}=80}\\{{v}_{乙}=60}\end{array}\right.$,
答:甲行驶的速度是80km/h,乙行驶的速度是60km/h.

点评 本题考查了一次函数的应用,解决本题的关键是根据图象获取相关信息,利用待定系数法求函数解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.解方程
(1)$\frac{2-x}{x-3}+\frac{1}{3-x}=1$.
(2)$\frac{x}{x-1}-\frac{2x-1}{{{x^2}-1}}=1$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列运算正确的是(  )
A.$\sqrt{16}$=±4B.(3xy22=6x2y4C.a3•a2=a5D.($\sqrt{2}+1$)($1-\sqrt{2}$)=1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.不等式组$\left\{\begin{array}{l}{3-2x≥-1}\\{x+3>0}\end{array}\right.$的所有非负整数解为0,1,2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程:$\frac{1}{x-3}$-1=$\frac{2}{3-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解不等式组$\left\{\begin{array}{l}{2x-1<4}\\{\frac{x-1}{2}≤x+1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列计算正确的是(  )
A.a2+a3=a5B.a2•a3=a6C.(a23=a6D.($\frac{a}{2}$)2=$\frac{{a}^{2}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.“x的3倍与y的和不小于2”用不等式可表示为(  )
A.3x+y>2B.3(x+y)>2C.3x+y≥2D.3(x+y)≥2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.若a与b互为相反数,c与d互为倒数,则a+b+3cd=3.

查看答案和解析>>

同步练习册答案