【题目】已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).
(1)求该抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.
① 当点P' 落在该抛物线上时,求m的值;
② 当点P' 落在第二象限内,P'A2取得最小值时,求m的值.
【答案】(1)(1,-4)(2)
【解析】试题分析:
(1)把点A(-1,0)代入抛物线y=x2+bx﹣3解得b的值,即可得到抛物线的解析式;把所得解析式配方化为“顶点式”即可得到抛物线的顶点坐标;
(2)①由点P的坐标(m,t)可得点P′的坐标为(-m,-t),把两点的坐标分别代入(1)中所求抛物线的解析式可得:t=m2﹣2m﹣3,t=﹣m2﹣2m+3,由此可得m2﹣2m﹣3=﹣m2﹣2m+3,解此方程即可求得m的值;
②由P(m,t)在抛物线上可得m2﹣2m=t+3,结合A(﹣1,0),P′(﹣m,﹣t)可得:P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+)2+;由P′(﹣m,﹣t)在第二象限,抛物线顶点坐标为(1,-4)可求得﹣4≤t<0,由此可得当t=﹣时,P′A2有最小值,把t=﹣代入 t=﹣m2﹣2m+3解方程即可求得此时m的值.
试题解析:
(1)∵抛物线y=x2+bx﹣3经过点A(﹣1,0),
∴0=1﹣b﹣3,解得b=﹣2,
∴抛物线解析式为y=x2﹣2x﹣3,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线顶点坐标为(1,﹣4);
(2)①由P(m,t)在抛物线上可得t=m2﹣2m﹣3,
∵点P′与P关于原点对称,
∴P′(﹣m,﹣t),
∵点P′落在抛物线上,
∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,
∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m=或m=﹣;
②由题意可知P′(﹣m,﹣t)在第二象限,
∴﹣m<0,﹣t>0,即m>0,t<0,
∵抛物线的顶点坐标为(1,﹣4),
∴﹣4≤t<0,
∵P在抛物线上,
∴t=m2﹣2m﹣3,
∴m2﹣2m=t+3,
∵A(﹣1,0),P′(﹣m,﹣t),
∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+)2+;
∴当t=﹣时,P′A2有最小值,
∴﹣=m2﹣2m﹣3,解得m=或m=,
∵m>0,
∴m=不合题意,舍去,
∴m的值为.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且△OAB的面积为6.
(1)求点A、B的坐标;
(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S;
(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及△BPQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题。
(1)如图,在方格纸中先通过________,由图形A得到图形B,再由图形B先________(怎样平移),再________(怎样旋转)得到图形C(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);
(2)如图,如果点P、P3的坐标分别为(0,0)、(2,1),写出点P2的坐标是________;
(3)图形B能绕某点Q顺时针旋转90°得到图形C,则点Q的坐标是________;
(4)图形A能绕某点R顺时针旋转90°得到图形C,则点R的坐标是________; 注:方格纸中的小正方形的边长为1个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2,∠C=∠E, AE=AC,
(1)求证: △ABC≌△ADE;
(2) 求证:∠2=∠3;
(3)当∠2=90°时,判断△ABD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮从家步行到公交站台,等公交车去学校.图中折线表示小亮的行程与所花时间之间的函数关系.下列说法:他离家共用了;他等公交车的时间是;他步行的速度是;公交车的速度是.正确的有________________(只填正确说法的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B(a,b)在第一象限,过B作BA⊥y轴于A,过B作BC⊥x轴于C,且实数a、b满足(a-b-2)2+|2a+b-10|≤0,含45角的Rt△DEF的一条直角边DF与x轴重合,DE⊥x轴于D,点F与坐标原点重合,DE=DF=3.△DEF从某时刻开始沿着坐标轴以1个单位长度每秒的速度匀速运动,运动时间为t秒.
(1)求点B的坐标;
(2)若△DEF沿着y轴负方向运动,连接AE,EG平分∠AEF,EH平分∠AED,当EG∥DF时,求∠HEF的度数;
(3)若△DEF沿着x轴正方向运动,在运动过程中,记△AEF与长方形OABC重叠部分的面积为S,当0<t≤4,S=时,请你求出运动时间t.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com