【题目】如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,点D为抛物线的顶点,抛物线的对称轴是x=﹣1,且与x轴交于E点.
(1)请直接写出抛物线的解析式及顶点D的坐标;
(2)如图2,连接AD,设点P是线段AD上的一个动点,过点P作x轴的垂线交抛物线于点G,交x轴于点H,连接AG、GD,当△ADG的面积为1时,
①求点P的坐标;
②连接PC、PE,探究PC、PE的数量关系和位置关系,并说明理由;
(3)设M为抛物线上一动点,N为抛物线的对称轴上一动点,Q为x轴上一动点,当以Q、M、N、E为顶点的四边形为正方形时,请直接写出点Q的坐标.
【答案】(1)y=﹣x2﹣2x+3,顶点D坐标为(﹣1,4);(2)①P(﹣2,2);②PC=PE,PC⊥PE,理由见解析;(3)Q(,0)或(,0)或(,0)或(,0)
【解析】
(1)根据待定系数法,即可得到答案;
(2)①易求:直线AD的解析式为:y=2x+6,设点P(m,2m+6)(﹣3<m<﹣1),则G(m,﹣m2﹣2m+3),得到PG=﹣m2﹣4m﹣3,结合S△ADG=1,列出关于m的方程即可;
②连接CE,根据勾股定理分别求出PC,PE, CE的值,即可得到PC、PE的数量关系和位置关系;
(3)设N(﹣1,n),Q(p,0),根据题意得:M(p,n),|p+1|=|n|,﹣p2﹣2p+3=n,即可求出点Q的坐标.
(1)∵抛物线y=﹣x2+bx+c的对称轴是x=﹣1,
∴﹣ =﹣1,
∴b=﹣2,
∴抛物线y=﹣x2+bx+c的解析式为y=﹣x2﹣2x+c,
∵抛物线过点A(﹣3,0),
∴0=﹣9+6+c,
∴c=3,
∴抛物线的解析式为y=﹣x2﹣2x+3,
∴顶点D坐标为(﹣1,4);
(2)①由(1)知,D(﹣1,4),
∵A(﹣3,0),
∴直线AD的解析式为:y=2x+6,
设点P(m,2m+6)(﹣3<m<﹣1),
由(1)知,抛物线的解析式为:y=﹣x2﹣2x+3,
∵PH⊥x轴,
∴G(m,﹣m2﹣2m+3),
∴PG=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3,
∵△ADG的面积为1,
∴S△ADG=PG×(﹣1+3)=﹣m2﹣4m﹣3=1,
∴m=﹣2,
∴P(﹣2,2);
②如图2,连接CE,由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,
∴C(0,3),
由①知,P(﹣2,2),
∵抛物线的对称轴x=1,
∴E(﹣1,0),
∴PC=,PE==, CE=,
∴PC=PE,PC2+PE2=5+5=10=CE2,
∴△PCE是以CE为斜边的直角三角形,
∴∠CPE=90°.
∴PC⊥PE;
(3)设N(﹣1,n),Q(p,0),
∵以Q、M、N、E为顶点的四边形为正方形,
∴M(p,n),|p+1|=|n|①,
∵点M在抛物线上,
∴﹣p2﹣2p+3=n②,
联立①②解得, 或或或,
∴Q(,0)或(,0)或(,0)或(,0).
科目:初中数学 来源: 题型:
【题目】如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,AB//DC,AB=DC,且AB=6cm,BC=8cm,对角线AC =10cm,
(1)求证:四边形ABCD是矩形;
(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;
(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正六边形A1B1C1D1E1F1的边长为1,它的6条对角线围成一个正六边形A2B2C2D2E2F2;正六边形A2B2C2D2E2F2的6条对角线又围成一个正六边形A3B3C3D3E3F3…;如此继续下去,则六边形A4B4C4D4E4F4的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC分别相交于点F、G, .
(1)求证:△CAD∽△CBG;
(2)联结DG,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接写出点B的坐标
(2)已知D.E分别为线段OC.OB上的点,OD=5,OE=2BE,直线DE交x轴于点F,求直线DE的解析式
(3)在(2)的条件下,点M是直线DE上的一点,在x轴上方是否存在另一个点N,使以O.D.M.N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】消费者在某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸.现将张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.
(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖,她从中随机翻开一张纸牌,小杨获奖的概率是________.
(2)如粜小杨、小月都有翻两张牌的机会,小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过画树状图或列表法分析说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是正△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO',下列结论:①△BO'A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为6;③∠AOB=150°;④S△BOC=12+6; ⑤S四边形AOBO′=24+12.其中正确的结论是_____.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com