精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,
(1)求证:△ACE△CBE;
(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式;
(3)探究:当x为何值时,tan∠D=
3
3

(1)证明:∵AB为⊙O直径,
∴∠ACB=90°,即∠ACE+∠BCE=90°.
又CD⊥AB,∴∠A+∠ACE=90°,
∴∠A=∠ECB,
∴Rt△ACERt△CBE;

(2)∵△ACE△CBE,
AE
CE
=
CE
EB

即CE2=AE•BE=(AO+OE)(OB-OE),
∴y=(4+x)(4-x)=16-x2

(3)∵tan∠D=
3
3
,即tan∠A=
3
3

CE
AE
=
3
3

CE2
AE2
=
1
3

16-x2
(4+x)2
=
1
3

解得x=2或x=-4(舍去).
故当x=2时,tan∠D=
3
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(0,-3),且顶点P的坐标为(1,-4),
(1)求这个函数的关系式;
(2)试问x为何值时,函数y的值大于0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).
(1)试求a,b所满足的关系式;
(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的
5
4
倍时,求a的值;
(3)是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线C1:y=ax2+4ax+4a-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求抛物线的解析式和顶点P的坐标;
(2)将抛物线沿x轴翻折,再向右平移,平移后的抛物线C2的顶点为M,当点P、M关于点B成中心对称时,求平移后的抛物线C2的解析式;
(3)直线y=-
3
5
x+m
与抛物线C1、C2的对称轴分别交于点E、F,设由点E、P、F、M构成的四边形的面积为s,试用含m的代数式表示s.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=
1
2
x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.
(1)求a的值;
(2)求A,B的坐标;
(3)以AC,CB为一组邻边作?ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=mx2-(m+5)x+5.
(1)求证:它的图象与x轴必有交点,且过x轴上一定点;
(2)这条抛物线与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,过(1)中定点的直线L;y=x+k交y轴于点D,且AB=4,圆心在直线L上的⊙M为A、B两点,求抛物线和直线的关系式,弦AB与弧
AB
围成的弓形面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

美廉客超市以30元/千克的价格购进一批新疆和田玉枣,如果以35元/千克的价格销售,那么每天可售出300千克;如果以40元/千克的价格销售,那么每天可售出200千克,根据销售经验可以知道,每天的销售量y(千克)与销售单价x(元)(x≥30)存在一次函数关系.
(1)请你求出y与x之间的函数关系式;
(2)设该超市销售新疆和田玉枣每天获得的利润为w元,求当销售单价为多少时,每天获得的利润最大,最大利润是多少?
(3)如果物价局规定商品的利润率不能高于40%,而超市希望每天销售新疆和田玉枣的利润不低于1500元,请你帮助超市确定这种枣的销售单价x的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

要修建一个圆形喷水池,在池中心竖直安装一根带有喷水头的水管.喷出的水所形成的水流的形状是抛物线,如果要求水流的最高点到水管的水平距离为1m,距离地面的高度为3m,水流落地处到水管的水平距离是3m,求这根带有喷水头的水管在地面以上的高度?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y(件)与销售单价x(元)的关系符合一次函数y=-x+140.
(1)直接写出销售单价x的取值范围.
(2)若销售该服装获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价为多少元时,可获得最大利润,最大利润是多少元?

查看答案和解析>>

同步练习册答案