精英家教网 > 初中数学 > 题目详情
18.崖城13-1气田是我国海上最大合作气田,年产气约为3400000000立方米,将数据3400000000用科学记数法表示为3.4×109

分析 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解答 解:3400000000=3.4×109
故答案为:3.4×109

点评 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.若点A(m,y1),B(m+1,y2)都在二次函数y=ax2+4ax+2(a>0)的图象上,且y1<y2,则m的取值范围是(  )
A.m>-$\frac{5}{2}$B.m≥-2C.m<-1D.m≤-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=$\frac{6}{x}$上的概率为$\frac{1}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(-3,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为(  )
A.$\sqrt{7}$B.$\frac{\sqrt{119}}{5}$C.2.4D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在△ABC中,DE∥BC,$\frac{AD}{DB}$=$\frac{1}{2}$,则下列结论中正确的是(  )
A.$\frac{AE}{AC}$=$\frac{1}{2}$B.$\frac{DE}{BC}$=$\frac{1}{2}$
C.$\frac{△ADE的周长}{△ABC的周长}$=$\frac{1}{3}$D.$\frac{△ADE的面积}{△ABC的面积}$=$\frac{1}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.计算:$\sqrt{2}×\sqrt{4}$=2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算△ABC的面积等于$\frac{3}{2}$;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以BC为一边的矩形,使该矩形的面积是△ABC面积的5倍,并简要说明画图方法(不要求证明)取格点D、E,连结CD、BE;再取格点M、N、P、Q,连结MN交CD于G,连结PQ交BE于H,连结GH,则四边形BCGH为所求.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.商场为了促销某件商品,设置了如图的一个转盘,它被分成了3个相同的扇形.各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取,每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买商品的价格不超过30元的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如果一条抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为A,B(点A在点B的左侧),顶点为P,连接PA,PB,那么称△PAB为这条抛物线的“抛物线三角形”.
(1)请写出“抛物线三角形”是等腰直角三角形时,抛物线的表达式(写出一个即可)y=-x2+1;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等边三角形,求b的值;
(3)若△PAB是抛物线y=-x2+c的“抛物线三角形”,是否存在以点A为对称中心的矩形PBCD?若存在,求出过O,C,D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案