【题目】已知,△ABC中,∠BAC=90°,AB=AC.
(1)如图1,若AB=8,点D是AC边上的中点,求S△BCD;
(2)如图2,若BD是△ABC的角平分线,请写出线段AB、AD、BC三者之间的数量关系,并说明理由;
(3)如图3,若D、E是AC边上两点,且AD=CE,AF⊥BD交BD、BC于F、G,连接BE、GE,求证:∠ADB=∠CEG.
【答案】(1)16;(2)BC=AB+AD;(3)见解析
【解析】
(1)根据三角形的中线将三角形分成面积相等的两个三角形得:S△BCD=S△ABD,因此计算△ABD的面积就是△BCD的面积,代入面积公式计算即可;
(2)如图2,作辅助线,构建全等三角形,证明△ABD≌△EBD,则AB=EB,AD=DE,再证明△DEC是等腰直角三角形,根据BC=BE+CE可得结论;
(3)如图3,作辅助线构建全等三角形和直角三角形,证明△ABD≌△CAH,得AD=CH,∠ADB=∠H;得出CE=CH,所以继续证明△ECG≌△HCG,得∠CEG=∠H,从而得出结论.
(1)如图1,在Rt△ABC中,AB=AC=8,
∵D是AC的中点,
∴AD=CD=AC=4,
∴S△BCD=S△ABD=ADAB=×8×4=16;
(2)数量关系为:BC=AB+AD.理由如下:
如图2,过D作DE⊥BC于E,
又∵∠BAC=90°,
∴∠BED=∠BAC=90°,
∵BD是∠ABC的角平分线,
∴∠ABD=∠EBD,
又∵BD=BD,
∴△ABD≌△EBD,
∴AB=EB,AD=DE,
∵∠BAC=90°,AB=AC,
∴∠ABC=∠C=45°,
又∵∠CED=90°,
∴∠CDE=180°-∠CED-∠C=45°=∠C,
∴CE=DE,
又∵AB=EB,AD=DE,
∴BC=BE+CE=AB+DE=AB+AD;
(3)如图3,过点C作CH⊥AC,交AG的延长线于点H,
又∵∠BAC=90°,
∴∠HCA=∠DAB=90°,
∵∠BAC=90°,AF⊥BD,
∴∠DAF+∠ADF=90°,∠ABD+∠ADF=90°,
∴∠ABD=∠DAF,
又∵AB=AC,∠HCA=∠DAB,
∴△ABD≌△CAH,
∴AD=CH,∠ADB=∠H.
又∵AD=CE,
∴CH=CE.
∵∠ACB=45°,∠ACH=90°,
∴∠BCH=∠ACB=45°,
又∵GC=GC,CH=CE,
∴△ECG≌△HCG,
∴∠CEG=∠H,
又∵∠ADB=∠H,
∴∠ADB=∠CEG.
科目:初中数学 来源: 题型:
【题目】如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 今年6月份,我市某果农收获荔枝30吨,香蕉13吨.现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可将荔枝4吨和香蕉1吨,乙种货车可将荔枝和香蕉各2吨.
(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来?
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输1300元,则该果农应选择哪能种方案才能使运输费最少?最少动费是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示.在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.
(1)若点Q与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由.
(2)若点Q与点P的运动速度不同,当点Q的运动速度是多少时能使△BPD与△CQP全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy(如图)中,已知抛物线y=+bx+c点经过A(1,0)、B(0,2).
(1)求该抛物线的表达式;
(2)设该抛物线的对称轴与x轴的交点为C,第四象限内的点D在该抛物线的对称轴上,如果以点A、C、D所组成的三角形与△AOB相似,求点D的坐标;
(3)设点E在该抛物线的对称轴上,它的纵坐标是1,联结AE、BE,求sin∠ABE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义运算:ab=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则bb﹣aa的值为( )
A. 0 B. 1 C. 2 D. 与m有关
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com