精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;

(2)求DE的长?

(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

 

【答案】

(1)点B的坐标为(0,2);(2)DE=4;(3)m的值为8或-8..

【解析】

试题分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;

(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;

(3)①根据点A和点B的坐标,得到,将代入,即可求出二次函数的表达式;

②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.

试题解析:(1)当m=2时,y=(x-2)2+1,

把x=0代入y=(x-2)2+1,得:y=2,

∴点B的坐标为(0,2).

(2)延长EA,交y轴于点F,

∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,

∴△AFC≌△AED,

∴AF=AE,

∵点A(m,-m2+m),点B(0,m),

∴AF=AE=|m|,BF=m-(-m2+m)=m2

∵∠ABF=90°-∠BAF=∠DAE,∠AFB=∠DEA=90°,

∴△ABF∽△DAE,

即:

∴DE=4.

(3)①∵点A的坐标为(m,-m2+m),

∴点D的坐标为(2m,-m2+m+4),

∴x=2m,y=-m2+m+4,

∴y=-•()2++4,

∴所求函数的解析式为:y=-x2++4,

②作PQ⊥DE于点Q,则△DPQ≌△BAF,

(Ⅰ)当四边形ABDP为平行四边形时(如图1),

点P的横坐标为3m,点P的纵坐标为:(-m2+m+4)-(m2)=-m2+m+4,

把P(3m,-m2+m+4)的坐标代入y=-x2++4得:-m2+m+4=-×(3m)2+×(3m)+4,

解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.

(Ⅱ)当四边形ABPD为平行四边形时(如图2),

点P的横坐标为m,点P的纵坐标为:(-m2+m+4)+(m2)=m+4,

把P(m,m+4)的坐标代入y=-x2++4得:

m+4=-m2+m+4,

解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=-8,

综上所述:m的值为8或-8.

考点:二次函数综合题.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案