精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为斜边并且在AB的同一侧作等腰直角△ACD和△BCE,连接AE交CD于M,连接BD交CE于N.给出以下四个结论:①MN∥AB;②
1
MN
=
1
AC
+
1
BC
;③MN≤
1
4
AB
.④AB=2MN;其中正确的结论有
 
(填写序号即可)
分析:(1)用平行线分线段成比例定理;
(2)根据相似三角形的性质,化简分式可得;
(3)要利用二次函数最值即可求解.
(4)根据③直接得出MN≠
1
2
AB.
解答:解:(1)∵CD∥BE,
∴△CND∽△ENB,
CN
NE
=
DC
BE

∵CE∥AD,
∴△AMD∽△EMC,
AM
ME
=
AD
CE

∵等腰直角△ACD和△BCE,
∴CD=AD,BE=CE,
CN
NE
=
AM
ME

∴MN∥AB;

(2)∵CD∥BE,
∴△CND∽△ENB,
CN
NE
=
DN
NB

CN
NE
=
DN
NB
=k,
则CN=kNE,DN=kNB,
∵MN∥AB,
∴△EMN∽△EAC,
MN
AC
=
NE
CE
=
NE
NE+CN
=
1
k+1

MN
BC
=
DN
DB
=
DN
DN+NB
=
k
k+1

MN
AC
+
MN
BC
=1,
1
MN
=
1
AC
+
1
BC


(3)∵
1
MN
=
1
AC
+
1
BC

∴MN=
AC•BC
AC+BC
=
AC•BC
AB

设AB=a(常数),AC=x,
则MN=
1
a
x(a-x)=-
1
a
(x-
1
2
a)2+
1
4
a≤
1
4
a;

(4)由③得出MN≠
1
2
AB,故④错误.
故答案为:①②③.
点评:此题考查了三角形相似的判定与性质、平行线分线段成比例定理、比例变形及二次函数的应用,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知B是线段AE上一点,ABCD和BEFG都是正方形,连接AG、CE.
(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:
PG
CG
=
PE
AG

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知CD是线段AB的垂直平分线,垂足为D,E是CD上一点.若∠A=60°,则下列结论中错误的是(  )
A、AE=BEB、AD=BDC、AB=ACD、ED=AD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知C是线段AB的中点,则CD等于(  )
精英家教网
A、AD-BD
B、
1
2
(AD-BD)
C、
1
2
AB-BD
D、AD-
1
2
AB

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图,已知P是线段AB的黄金分割点,且PA>PB,若S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1
=
=
S2.(填“>”“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图①,已知C是线段AB上一点,分别以AC、BC为边长在AB的同侧作等边△ADC与等边△CBE,试猜想AE与DB的大小关系,并证明.
(2)如图②,当等边△CBE绕点C旋转后,上述结论是否仍成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案