【题目】如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2.则∠BCD= °,cos∠MCN= .
【答案】120 ;
【解析】
试题分析:∵在四边形ABCD中, AB⊥BC,AD⊥CD,∠BAD=60°, ∴∠BCD=360°-90°-90°-60°=120°;
连接MN,连接AC,
∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,∵∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,
∵在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=,
在Rt△BMC中,CM==,
过M点作ME⊥ON于E,设NE=x,则CE=-x,
∴MN2-NE2=MC2-EC2,即4-x2=()2-(-x)2,
解得:x=,∴EC=-=,∴cos∠MCN=.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AB为直径的⊙O交BC于点D,∠DAC=∠B.
(1)求证:CA是⊙O的切线.
(2)在AB上取一点E,若∠BCE=∠B,AB=2AC,求tan∠ACE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某果农在其承包的果园中种植了60棵桔子树,每棵桔子树的产量是100kg,果农想增加桔子树的棵数来增产,但增加果树会导致每棵树的光照减少,使得单棵果树产量减少,试验发现每增加1棵桔子树,单棵桔子树的产量减少0.5kg.
(1)在投入成本最低的情况下,增加多少棵桔子树时,可以使果园总产量达到6650kg?
(2)设增加x棵桔子树,考虑实际增加桔子树的情况,10≤x≤40,请你计算一下,果园总产量最多为多少kg,最少为多少kg?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y1:y=2(x﹣3)2+1和抛物线y2:y=﹣2x2﹣8x﹣3,若无论k取何值,直线y=kx+km+n被两条抛物线所截的两条线段都保持相等,则m=_____,n=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.
(1)求一次函数的表达式;
(2)求△AOB的面积;
(3)写出不等式kx+b>﹣的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )
操作组 | 管理组 | 研发组 | |
日工资(元/人) | 260 | 280 | 300 |
人数(人) | 4 | 4 | 4 |
A.团队平均日工资不变B.团队日工资的方差不变
C.团队日工资的中位数不变D.团队日工资的极差不变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.
(1)求证:△AFC∽△ACE;
(2)若AC=5,DC=6,当点F为的中点时,求AF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,∠B=∠C=90°,若AB=4,BC=4,CD=1,问:在BC上是否存在点P,使得AP⊥PD?若存在,求出BP的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,以为直径作,点D在上,,,垂足为点E,与和分别交于点M、F.连接、、.
(1)证明:是的切线;
(2)若,,求的半径长;
(3)在(2)的条件下,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com