精英家教网 > 初中数学 > 题目详情
9.关于x的方程(k2-1)x|k+1|-kx=3是一元二次方程,则k=-3.

分析 根据一元二次方程的二次项系数不为零、未知数最高指数是2进行解答.

解答 解:依题意得:|k+1|=2且k2-1≠0,
解得k=-3.
故答案是:-3.

点评 本题考查了一元二次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.如图,在矩形ABCD中,AD=$\sqrt{2}$AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:
①△ABE≌△AHD;②HE=CE;③H是BF的中点;④AB=HF;
其中正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.关于x的方程ax2+2(a-3)x+(a-2)=0至少有一个整数根,且a是整数,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.平行四边形ABCD的对角线的交点在坐标原点,且AD∥x轴,若点A的坐标为(-1,2),则点C的坐标为(1,-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:
(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.此时,有结论AE=MN,请进行证明;
(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN 与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.
(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.数据:2,5,4,5,3,5,4的众数与中位数分别是(  )
A.4,3B.4,5C.3,4D.5,4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,2,在矩形ABCD中,AB=6,BC=8,连接BD.现将一个足够大的直角三角板的直角顶点O放在射线BD上(点P不与点B、D重合),一条直角边过点C,另一条直角边与AB所在的直线交于点G.
(1)如图1,当点P在线段BD上,且PG=BC时,
       ①求证:△GBC≌△CPG;    ②求BG的长;
(2)如图2,当点P在线段BD的延长线上,且PC=BC时,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连结DF.
(1)求证:∠AFD=∠CFE;
(2)若AB∥CD,试说明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列事件是必然事件的为(  )
A.购买一张彩票,中奖
B.通常加热到100℃时,水沸腾
C.任意画一个三角形,其内角和是360°
D.射击运动员射击一次,命中靶心

查看答案和解析>>

同步练习册答案