精英家教网 > 初中数学 > 题目详情
精英家教网如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为
 
分析:根据菱形的性质和等边三角形的判定方法得,三角形ABC是等边三角形.则AE⊥BC,根据勾股定理求得AE的长,同理得到EF的长,根据已知可推出△AEF是等边三角形,从而得到其周长是3
3
解答:精英家教网解:连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC为等边三角形,
∴AC=AB=AD=CD,
∴∠CAD=60°,
∴∠BAD=120°,
∵E为BC的中点,
∴AE⊥BC,∠EAC=30°,
∴AE=
3

同理:AF=
3

∵AE=AF,∠CAF=30°
∴∠EAF=60°,
∴EF=
3

∴△AEF的周长为3
3

故答案为:3
3
点评:此题考查菱形的性质,等边三角形的判定及勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案