【题目】如图,已知ABCD中,∠ABC=60°,AB=4,BC=m,E为BC边上的动点,连结AE,作点B关于直线AE的对称点F.
(1)若m=6,①当点F恰好落在∠BCD的平分线上时,求BE的长;
②当E、C重合时,求点F到直线BC的距离;
(2)当点F到直线BC的距离d满足条件:2﹣2≤d≤2+4,求m的取值范围.
【答案】(1)①BE=10﹣2;②;(2)4﹣4≤m≤8+4
【解析】
(1)①过F作FT⊥BC于T,延长BA交∠BCD的平分线于G,连接BF,EF,AF,由平行四边形性质可得:△BCG,△CDH均为等边三角形,AG=AH=2,再由B、F关于直线AE对称,可证得:△CEF∽△GFA,再结合勾股定理可求得BE的长;
②设BF交AC于T,过T作TR⊥BC于R,过F作FH⊥BC于H,过A作AG⊥BC于G,可求得BG、AG、GH、AC,再由面积法可求得BT、BF,再证明△BTR∽△BFH,结合勾股定理即可求得点F到直线BC的距离;
(2)先找出d的最大值的情形,画出图形,由d的最大值可求得m的最大值再根据d的最小值求得m的最小值,即可得m的范围.
解:(1)①如图1,过F作FT⊥BC于T,延长BA交∠BCD的平分线于G,连接BF,EF,AF,
∵ABCD,
∴AB∥CD,AD∥BC,AB=CD,AD=BC,
∵∠ABC=60°,
∴∠BCD=120°,∠ADC=60°,
∵CG平分∠BCD,
∴∠BCG=∠DCG=60°
∴△BCG,△CDH均为等边三角形,
∴CG=BC=BG=6,∠G=60°,DH=CD=4,
∴AG=AH=2,
∵B、F关于直线AE对称,
∴AF=AB=4,EF=BE,∠AFE=∠ABC=60°,
∴∠AFG+∠CFE=120°,∠AFG+∠FAG=120°,
∴∠CFE=∠FAG,
∴△CEF∽△GFA,
∴,即:CF=EF,设BE=EF=x,则CF=x,
∵∠CFT=30°,
∴CT=CF=x,FT=x,
∵ET2+FT2=EF2,
∴,
解得:x1=10+ (不符合题意,舍去),x2=10﹣,
∴BE=10﹣2,
②如图2,设BF交AC于T,过T作TR⊥BC于R,过F作FH⊥BC于H,过A作AG⊥BC于G,连接AF,FC,
∵∠AGB=90°,∠ABC=60°,
∴∠BAG=30°
∴BG= AB=2,AG=2,GC=BC﹣BG=4,
∴AC=,
∵B、F关于AC对称,
∴BF⊥AC,BT=TF,
由△ABC面积公式可得BTAC=AGBC,
即BT=2×6,
∴BT=,BF=,
在Rt△BCT中,CT=,
∵TRBC=BTCT,即6TR=,
∴TR=,
∵TR⊥BC,FH⊥BC,
∴TR∥FH,
∴△BTR∽△BFH,
∴,
∴FH=2TR=,
故点F到直线BC的距离为;
(2)如图3,作AG⊥BC于G,
当点FA、G三点共线时,点F到直线BC的距离d最大,
此时点E与点C重合,FG=2 +4,
由(1)知,BG=2,AG=2 ,
∴BF=,
∴BH=BF=,
∵∠BHC=∠BGF=90°,∠CBH=∠FBG,
∴△CBH∽△FBG,
∴,即,
解得:m=8+4 ,
∴m的最大值为8+4 ,
如图4,作AG⊥BC于G,FH⊥BC于H,FR⊥AG于R,连接AF,
设BF交AC于T,
则AG=2 ,BG=2,CG=BC﹣BG=m-2,
此时点E与点C重合,FH=﹣2,
显然,FHGR是矩形,
∴RG=FH=﹣2, AR=AG﹣RG=2,
∵B、F关于AC对称,
∴BF⊥AC,BT=TF,AF=AB=4,
∴RF=GH=,
∴BH=BG+GH=2+ ,
∴BF=,
∴BT=TF=BF=2,
∵△BCT∽△BFH,
∴,即,
解得m=4 ﹣4,
∴m的最小值为4 ﹣4,
综上所述,4﹣4≤m≤8+4.
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.
(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;
(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;
(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店出售某品牌的棉衣,进价为100元/件,当售价为150元/件时,平均每天可卖30件;为了尽快减少库存迎接“元旦”的到来,商店决定降价销售,增加利润,经调查每件降价5元,则每天可多卖10件,现要想平均每天获利2000元,且让顾客得到实惠,那么每件棉衣应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人要某风景区游玩,每天某一时段开往该景区有三辆汽车(票价相同),但是他们不清楚这三辆车的舒适程度,也不知道汽车开来的顺序,两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车辆的舒适状况,如果第二辆车状况比第一辆好,他就上第二辆车,如果第二辆不比第一辆好,他就上第三辆车.这三辆车的舒适程度为上、中、下三等,请解决下面的问题:
(1)请用画树形图或列表的方法分析这三辆车出现的先后顺序,写出所有可能的结果;(用上中下表示)
(2)分析甲、乙两人采用的方案,谁的方案使自己坐上上等车的可能性大,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,其中A型净水器每台的利润为400元,B型净水器每台的利润为500元.该公司计划再一次性购进两种型号的净水器共100台,其中B型净水器的进货量不超过A型净水器的2倍,设购进A型净水器x台,这100台净水器的销售总利润为y元.
(1)求y关于x的函数关系式;
(2)该公司购进A型、B型净水器各多少台,才能使销售总利润最大,最大利润是多少?
(3)实际进货时,厂家对A型净水器出厂价下调a(0<a<150)元,且限定公司最多购进A型净水器60台,若公司保持同种净水器的售价不变,请你根据以上信息,设计出使这100台净水器销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.
(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由;
(3)若AB=1,求HGHB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,4),在x轴上有一动点D9(m,0)(0<m<4),过点D作x轴的垂线交直线AB于点C,交抛物线于点E,
(1)直接写出抛物线和直线AB的函数表达式.
(2)当点C是DE的中点时,求出m的值,并判定四边形ODEB的形状(不要求证明).
(3)在(2)的条件下,将线段OD绕点O逆时针旋转得到OD′,旋转角为α(0°<a<90°),连接D′A、D′B,求D′A+D′B的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,点E在△ABC内,且∠CAE+∠CBE=90°
(1)如图1,当△ABC和△EFC均为等腰直角三角形时,连接BF,
①求证:△CAE∽△CBF;
②若BE=2,AE=4,求EF的长;
(2)如图2,当△ABC和△EFC均为一般直角三角形时,若=k,BE=1,AE=3,CE=4,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com