【题目】如图,在Rt△ABC中,∠C=90°,sinB=,点D在BC边上,∠ADC=45°,DC=6,tan∠BAD=___.
【答案】.
【解析】
过D点作DE⊥AB,交AB于E点,把构造到直角三角形中,要求的正切值,只需求得DE、AE的长,根据等腰三角形的性质可以求得AC、AD的长,在直角三角形ABC中,根据sinB=,可以求得AB的长,根据勾股定理进一步求得BC的长,从而求得BD的长,在直角三角形BDE中,根据sinB=,进一步求得DE的长,根据勾股定理求得BE的长,即可进行计算.
过D点作DE⊥AB,交AB于E点,
在Rt△ADC中,∠C=90°,∠ADC=45°,DC=6,
∴∠DAC=45°,
∴AC=DC=6,
在Rt△ABC中,∠C=90°,
∵sinB=,
∴ =,
设AC=3k,则AB=5k,
∴3k=6,
∴k=2,
∴AB=5k=10,
根据勾股定理,得BC=8,
∴BD=BC﹣DC=8﹣6=2
在Rt△BDE中,∠BED=90°,sinB=,
∴=,DE=,
根据勾股定理,得BE=,
∴AE=AB﹣BE=10﹣=,
∴tan∠BAD==×=.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
则四边形ADCE的周长为( )
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.
(1)直接写出v与t的函数关系式;
(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.
①求两车的平均速度;
②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD
交于点M.
①的值为 ;②∠AMB的度数为 °;
(2)如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.求的值及∠AMB的度数;
(3)在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M.若OD=,OB=,请直接写出当点C与点M重合时AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;
(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;
(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,点D、F分别在边AB、AC上,请直接写出线段BD、CF的数量和位置关系;
(2)拓展探究:如图2,当正方形ADEF绕点A逆时针旋转锐角θ时,上述结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与⊙O的位置关系,并说明理由.
(2)若AC=3,CD=2.5,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:
(1)∠PBC=∠CBD;
(2)=ABBD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形ABC中,∠C=90°,AC=2,BC=2,点O是边AB上的一个动点,以点O为圆心,OA为半径作⊙O,与边AC交于点M.
(1)如图1,当⊙O经过点C时,⊙O的直径是 ;
(2)如图2,当⊙O与边BC相切时,切点为点N,试求⊙O与△ABC重合部分的面积;
(3)如图3,当⊙O与边BC相交时,交点为E、F,设CM=x,就判断AEAF是否为定值,若是,求出这个定值;若不是,请用含x的代数式表示.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com