精英家教网 > 初中数学 > 题目详情
14.课题学习:设计概率模拟实验.
在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是$\frac{1}{2}$.”小海、小东、小英分别设计了下列三个模拟实验:
小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;
小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;
小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.

根据以上材料回答问题:
小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.

分析 由模拟实验设计原则以及模拟实验的实际要求一一回答即可.

解答 解:小英设计的模拟实验比较合理.
小海选择的啤酒瓶盖质地不均匀;小东操作转盘时没有用力转动,而且实验次数太少,没有进行大量重复实验.

点评 本题考查了模拟实验,模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.掌握实验设计的原则是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度数.有同学用了下面的方法.但由于一时犯急没有写完整,请你帮他添写完整.
解:∵AD∥CB(  已知  )
∴∠C+∠ADC=180° (两直线平行,同旁内角互补)
又∵∠A=∠C (已知)
∴∠A+∠ADC=180° (等量代换)
∴AB∥CD (同旁内角互补,两直线平行)
∴∠BDC=∠ABD=32° (两直线平行,内错角相等).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,AC⊥BC,AC=BC,DC⊥EC,DC=EC,BE的延长线交直线AD于点F
(1)如图1,求证:BF⊥AD;
(2)如图1,连接FC,判断FC、FE、FD之间的数量关系,并说明理由;
(3)如图2,G为AE中点,I为BD中点,若AC=BC=4,EC=CD=1,当△ABE的面积为6时,求GI的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.下面是“以已知线段为直径作圆”的尺规作图过程.
已知:如图1,线段AB.
求作:以AB为直径的⊙O.
作法:如图2,
(1)分别以A,B为圆心,大于$\frac{1}{2}$AB的长为半径
作弧,两弧相交于点C,D;
(2)作直线CD交AB于点O;
(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.
请回答:该作图的依据是垂直平分线的判定和圆的定义.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.二次函数y=(m+2)x2-2(m+2)x-m+5,其中m+2>0.
(1)求该二次函数的对称轴方程;
(2)过动点C(0,n)作直线l⊥y轴.
①当直线l与抛物线只有一个公共点时,求n与m的函数关系;
②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;
(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.

该事件最有可能是③(填写一个你认为正确的序号).
①掷一个质地均匀的正六面体骰子,向上一面的点数是2;
②掷一枚硬币,正面朝上;
③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.有这样一个问题:探究函数y=$\frac{{x}^{2}}{2x-2}$的图象与性质.
下面是小文的探究过程,请补充完整:
(1)函数y=$\frac{{x}^{2}}{2x-2}$的自变量x的取值范围是x≠1;
(2)如表是y与x的几组对应值.
x-3-2-102345
y-$\frac{9}{8}$-$\frac{2}{3}$-$\frac{1}{4}$02$\frac{9}{4}$$\frac{8}{3}$$\frac{25}{8}$
如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.
①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为(1,1);
②小文分析函数y=$\frac{{x}^{2}}{2x-2}$的表达式发现:当x<1时,该函数的最大值为0,则该函数图象在直线x=1左侧的最高点的坐标为(0,0);
(3)小文补充了该函数图象上两个点($\frac{1}{2}$,-$\frac{1}{4}$),($\frac{3}{2}$,$\frac{9}{4}$),
①在上图中描出这两个点,并画出该函数的图象;
②写出该函数的一条性质:当x>1时,该函数的最小值为1.

查看答案和解析>>

科目:初中数学 来源:2017届湖北省枝江市九年级3月调研考试数学试卷(解析版) 题型:单选题

在践行社会主义核心价值观活动中,共评选出各级各类“湖北好人”45 000多名.45 000这个数用科学记数法表示为( )

A. 45×103 B. 4.5×104 . C. 4.5×105. D. 0.45×105.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.观察下列各式
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
根据规律可得(x-1)(xn-1+…+x+1)=xn-1(其中n为正整数)

查看答案和解析>>

同步练习册答案