精英家教网 > 初中数学 > 题目详情

【题目】如图7,在四边形ABCD中,ABBC,∠ABC=60°,ECD边上一点,连接BE,以BE为一边作等边三角形BEF.请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.

【答案】见解析,将CBE绕点B逆时针旋转60°,可与ABF重合.

【解析】

根据BEF是等边三角形,可得∠EBF=60°=CBA,EB=FB,进而得出∠CBE=ABF,再根据AB=BC,即可得到BCE≌△BAF,进而得出将CBE绕点B逆时针旋转60°,可与ABF重合.

如图,连接AF.

CBE绕点B逆时针旋转60°,可与ABF重合.

理由:

∵△BEF是等边三角形,

∴∠EBF=60°=CBA,EB=FB,

∴∠CBE=ABF,

又∵AB=BC,

∴△BCE≌△BAF,

∴将CBE绕点B逆时针旋转60°,可与ABF重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°BC16 cmAC12 cm,点P从点B出发,沿BC2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点PQ分别从点BC同时出发,设运动时间为ts,当t__________时,CPQCBA相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠C90°AB1tanA,过AB边上一点PPEACEPFBCFEF是垂足,则EF的最小值等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元。经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:

售价x(万元/件)

25

30

35

销售量y(件)

50

40

30

1)求yx之间的函数表达式;

2)设商品每年的总利润为W(万元),求Wx之间的函数表达式(利润=收入-成本);

3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,以的边为直径作,点C上,的弦,,过点C于点F,交于点G,过C的延长线于点E

1)求证:的切线;

2)求证:

3)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点EBE是半圆弧的三等分点,的长为,则图中阴影部分的面积为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与坐标轴分别交于AB两点,与反比例函数y的图象在第一象限的交点为CCDx轴于D,若OB3OD6AOB的面积为3

1)求一次函数与反比例函数的表达式;

2)当x0时,比较kx+b的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线ACy=﹣3x+3与直线AByax+b交于点A,且B(﹣90).

1)若F是第二象限位于直线AB上方的一点,过FFEABE,过FFDy轴交直线ABDDAB中点,其中△DFF的周长是12+4,若M为线段AC上一动点,连接EM,求EM+MC的最小值,此时y轴上有一个动点G,当|BGMG|最大时,求G点坐标;

2)在(1)的情况下,将△AOCO点顺时针旋转60°后得到△A′OC',如图2,将线段OA′沿着x轴平移,记平移过程中的线段OA′O′A″,在平面直角坐标系中是否存在点P,使得以点O′A″EP为顶点的四边形为菱形,若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4 层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.

(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;

(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.

查看答案和解析>>

同步练习册答案