精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BDAE于点F,延长AE至点C,使得FC=BC,连接BC

(1)求证:BC是⊙O的切线;

(2)O的半径为5,tanA=,求FD的长.

【答案】(1)证明见解析(2)

【解析】

(1)由点GAE的中点,根据垂径定理可知ODAE由等腰三角形的性质可得CBF=∠DFG,∠D=∠OBD从而OBD+∠CBF=90°,从而可证结论;

(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.

(1)∵点GAE的中点,

ODAE,

FC=BC,

∴∠CBF=CFB,

∵∠CFB=DFG,

∴∠CBF=DFG

OB=OD,

∴∠D=OBD,

∵∠D+∠DFG=90°,

∴∠OBD+∠CBF=90°

即∠ABC=90°

OB是⊙O的半径,

BC是⊙O的切线;

(2)连接AD,

OA=5,tanA=

OG=3,AG=4,

DG=OD﹣OG=2,

AB是⊙O的直径,

∴∠ADF=90°,

∵∠DAG+∠ADG=90°,ADG+∠FDG=90°

∴∠DAG=FDG,

∴△DAG∽△FDG,

DG2=AGFG,

4=4FG,

FG=1

∴由勾股定理可知:FD=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(题文)(1)阅读理解:

如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是_________;

(2)问题解决:

如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB是半圆O的直径,AC是弦,点P沿BA方向,从点B运动到点A,速度为1cm/s,若AB=10cm,点OAC的距离为4cm.

(1)求弦AC的长;

(2)问经过多长时间后,APC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+x+3的顶点为P,与y轴交于点A,若向右平移4个单位,向下平移4个单位,则抛物线上PA段扫过的区域(阴影部分)的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为适应新中考英语听说机考,九年级甲、乙两位同学使用某手机软件进行英语听说练习并记录了40次的练习成绩.甲、乙两位同学的练习成绩统计结果如图所示:

下列说法正确的是(  )

A. 甲同学的练习成绩的中位数是38分

B. 乙同学的练习成绩的众数是15分

C. 甲同学的练习成绩比乙同学的练习成绩更稳定

D. 甲同学的练习总成绩比乙同学的练习总成绩低

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=120°BC=4DAB的中点,DCBC,则ABC的面积是___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某二次函数的图象,将其向左平移个单位后的图象的函数解析式为,则下列结论中正确的有(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于二次函数y=x2﹣2mx+3m﹣3,以下说法:图象过定点(),②函数图象与x轴一定有两个交点,x=1时与x=2017时函数值相等,则当x=2018时的函数值为﹣3,④m=﹣1时,直线y=﹣x+1与直线y=x+3关于此二次函数对称轴对称,其中正确命题是(  )

A. ①② B. ②③ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年某企业按餐厨垃圾处理费25/吨,建筑垃圾处理费16/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100/吨,建筑垃圾处理费30/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,

1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?

2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

查看答案和解析>>

同步练习册答案