精英家教网 > 初中数学 > 题目详情

如图,若是⊙的直径,是⊙的弦,∠=56°,则∠=    度.

34

解析试题分析:由是⊙的直径可得∠ADB=90°,即可求得∠A的度数,从而可以求得结果.
是⊙的直径
∴∠ADB=90°
∵∠=56°
∴∠A=34°
∴∠=∠A=34°.
考点:圆周角定理,三角形的内角和定理
点评:解题的关键是熟记直径所对的圆周角为直角;同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-4),与x轴交于A、B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于点E,依次连接A、D、B、E,点Q为线段AB上一个动点(Q与A、B两点不重合),过点Q作QF⊥AE于F,QG⊥DB于G,请判断
QF
BE
+
QG
AD
是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点H是线段EQ上一点,过点H作MN⊥EQ,MN分别与边AE、BE相交于M、N,(M与A、E不重合,N与E、B不重合),请判断
QA
QB
=
EM
EN
是否成立?若成立,请给出证明;若不成立,精英家教网请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断
PM
BE
+
PN
AD
是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断
PA
PB
=
EF
EG
是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断数学公式是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断数学公式是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(40):2.8 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年3月中考数学模拟试卷(22)(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案