精英家教网 > 初中数学 > 题目详情
在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高().

【答案】分析:延长BD交AE于点F,作FG⊥ED于点G,Rt△FGD中利用锐角三角函数求得FD的长,从而求得FB的长,然后在直角三角形ABF中利用锐角三角函数求得AB的长即可.
解答:解:延长BD交AE于点F,作FG⊥ED于点G,
∵斜坡的顶部CD是水平的,斜坡与地面的夹角为30°,
∴∠FDE=∠AED=30°,
∴FD=FE,
∵DE=18米,
∴EG=GD=ED=9米,
在Rt△FGD中,
DF===6
∴FB=(6+6)米,
在Rt△AFB中,
AB=FB•tan60°=(6+6)×=(18+6)≈28.2米,
所以古塔的高约为28.2米.
点评:此题主要考查了解直角三角形的应用,解决本题的难点是把塔高的影长分为在平地和斜坡上两部分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•抚顺)在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高(
2
≈1.4,
3
≈1.7
).

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(辽宁抚顺卷)数学(解析版) 题型:解答题

在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高().

 

 

查看答案和解析>>

科目:初中数学 来源:抚顺 题型:解答题

在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高(
2
≈1.4,
3
≈1.7
).
精英家教网

查看答案和解析>>

同步练习册答案