精英家教网 > 初中数学 > 题目详情
已知:如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上的一点,且CD=AC=3,AB=4,求cosB,sin∠ADC及cos
12
∠DCA
的值.
分析:在直角三角形ABC中,由直角边AC及斜边AB的长,利用勾股定理求出直角边BC的长,根据锐角三角形函数的定义:一个角的余弦等于这个角的邻边比斜边,可求出cosB的值,同时A和B互余,可得sinA=cosB,由cosB的值得出sinA的值,由CD=AC,根据等边对等角可得∠ADC=∠A,故sin∠ADC的值即为sinA的值,过C作底边AD的垂线,根据三线合一得到CE为顶角的平分线,再由垂直定义得到∠AEC=90°,可得三角形AEC为直角三角形,根据直角三角形的两个锐角互余得出cos
1
2
∠ACD即cos∠ACE,即为sinA的值,由sinA的值即可求出所求的cos
1
2
∠ACD的值.
解答:解:在Rt△ABC中,
∵∠ACB=90°,AC=3,AB=4,
∴BC=
AB2-AC2
=
7
,…(1分)
∴cosB=sinA=
BC
AB
=
7
4
;…(2分)
∵CD=AC,
∴∠ADC=∠A,
∴sin∠ADC=sinA=
7
4
;…(3分)
过点C作CE⊥AD于E,
∴∠AEC=90°,
∴∠ACE+∠A=90°,
又CD=AC,CE⊥AD,
∴CE为∠ACD的平分线,即∠ACE=
1
2
∠DCA,
∴cos
1
2
∠DCA=cos∠ACE=sinA=
7
4
. …(5分)
点评:此题属于解直角三角形的题型,涉及的知识有:锐角三角函数定义,勾股定理,等腰三角形的性质,以及直角三角形的性质,其中当A和B互余时,根据锐角三角形函数定义可得sinA=cosB,cosA=sinB,熟练掌握此性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案