【题目】现将标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上,所有卡片的形状、大小都完全相同.现随机从中抽取一张卡片将其上面的数字作为十位上的数,然后放回洗匀,再随机抽取一张卡片,将其上面的数字作为个位上的数,组成两位数.
(1)请用列表或画树状图的方法表示出所有可能出现的结果:
(2)求这个两位数恰好能被3整除的概率.
科目:初中数学 来源: 题型:
【题目】如图,△ABC 是边长为6cm的等边三角形,被一平行于BC 的矩形所截,边长被截成三等份,则图中阴影部分的面积为 ( )
A.4cm2B.2cm2C.3cm2D.4cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,弦AB、CD相交于点E,且AB=CD,∠BED=α(0°<α<180°).有下列结论:①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=.其中一定成立的个数为( )
A.3个B.2个C.1个D.0个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(知识回顾)
我们把连结三角形两边中点的线段叫做三角形的中位线,并且有:三角形的中位线平行于第三边,并且等于第三边的一半.
(定理证明)
将下列的定理证明补充完整:
已知:如图①,在△ABC中,点D、E分别是边AB、AC中点,连结DE.
求证:
证明:
(定理应用)
如图②,在△ABC中,AB=10,∠ABC=60°,点P、Q分别是边AC、BC的中点,连结PQ.
(1)线段PQ的长为 .
(2)以点C为一个端点作线段CD(CD与AB不平行),连结AD,取AD的中点M,连结PM、QM.
①在图②中补全图形.
②当∠PQM=∠PMQ时,求CD的长.
③在②的条件下,当△PQM面积最大时,直接写出∠BCD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC和△ADE中AC=BC,AE=DE , ∠ACB=∠AED=90° , 点E在AB上,F是线段BD的中点,连接CE、FE.
(1)若AD=3,BE=4 ,求EF的长
(2)求证:CE=EF
(3)将图1中的△ADE绕点A顺时针旋转,使△AED的一边AE恰好与△ABC的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OP1A1B1,A1P2A2B2,A2P3A3B3,An﹣1PnAnBn都是正方形,其中点A1、A2、A3…An在y轴上,点P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)在反比例函数y=(x>0)的图象上,已知B1(﹣1,1),则点Pn的坐标为( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的边、分别在轴和y轴上,,,点Q是边上一个动点,过点Q的反比例函数与边交于点P.若将沿折叠,点B的对应点E恰好落在对角线上,则此时反比例函数的解析式是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点P在△ABC内,且满足∠APB=∠APC(如下图),∠APB+∠BAC=180°,
(1)求证:△PAB∽△PCA:
(2)如下图,如果∠APB=120°,∠ABC=90°求的值;
(3)如图,当∠BAC=45°,△ABC为等腰三角形时,求tan∠PBC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:
(1)求图中的x的值;
(2)求最喜欢乒乓球运动的学生人数;
(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com