精英家教网 > 初中数学 > 题目详情
19.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为(  )
A.6$\sqrt{2}$B.2$\sqrt{3}$C.4$\sqrt{5}$D.4$\sqrt{6}$

分析 首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.

解答 解:过点E作EM⊥BC于M,交BF于N,
∵四边形ABCD是矩形,
∴∠A=∠ABC=90°,AD=BC,
∵∠EMB=90°,
∴四边形ABME是矩形,
∴AE=BM,
由折叠的性质得:AE=GE,∠EGN=∠A=90°,
∴EG=BM,
在△ENG与△BNM中,
$\left\{\begin{array}{l}{∠ENG=∠BNM}\\{∠EGN=∠A}\\{AE=GE}\end{array}\right.$,
∴△ENG≌△BNM(AAS),
∴NG=NM,
∴CM=DE,
∵E是AD的中点,
∴AE=ED=BM=CM,
∵EM∥CD,
∴BN:NF=BM:CM,
∴BN=NF,
∴NM=$\frac{1}{2}$CF=1,
∴NG=1,
∵BG=AB=CD=CF+DF=6,
∴BN=BG-NG=6-1=5,
∴BF=2BN=10,
∴BC=$\sqrt{B{F}^{2}-C{F}^{2}}$=$\sqrt{1{0}^{2}-{2}^{2}}$=4$\sqrt{6}$.
故选D.

点评 此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.$\sqrt{5}$是一个无理数,请估计$\sqrt{5}$在哪两个整数之间?(  )
A.1与2B.2与3C.3与4D.4与5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.9的算术平方根是3,-27的立方根是-3,1-$\sqrt{2}$的相反数是$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算题
(1)($\sqrt{3}$+$\sqrt{2}$)($\sqrt{3}$-$\sqrt{2}$)-($\sqrt{2}$-1)2
(2)2$\sqrt{3}$($\sqrt{12}$-3$\sqrt{75}$+$\frac{1}{3}$$\sqrt{108}$)
(3)已知:x为奇数,且$\sqrt{\frac{x-6}{9-x}}$=$\frac{\sqrt{x-6}}{\sqrt{9-x}}$,求$\sqrt{{x}^{2}-2x+1}$+$\sqrt{3x-1}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,AC⊥BC,直线AM∥CB,点P在线段AB上,点D为射线AC上一动点,连结PD,射线PE⊥PD交直线AM于点E.已知BP=$\sqrt{2}$,AC=BC=4,
(1)如图1,当点D在线段AC上时,求证:PD=PE;
(2)当BA=BD时,请在图2中画出相应的图形,并求线段AE的长;
(3)如果∠EPD的平分线交射线AC于点G,设AD=x,GD=y,求y关于x的函数解析式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:$\root{3}{8}-{({\sqrt{12}+\sqrt{13}})^0}+{({-1})^{2016}}-{({\frac{1}{3}})^{-2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.若a=($\frac{1}{4}$)-1+20160,则a=5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,菱形ABCD中,∠D=135°,AD=6,CE=2$\sqrt{2}$,点P是线段AC上一动点,点F是线段AB上一动点,则PE+PF的最小值是(  )
A.3B.6C.2$\sqrt{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.实数x取任何值,下列代数式都有意义的是(  )
A.$\sqrt{6+2x}$B.$\sqrt{2-x}$C.$\sqrt{(x-1)^{2}}$D.$\frac{\sqrt{x+1}}{x}$

查看答案和解析>>

同步练习册答案